Skip to main content
Log in

Entire Solutions with Merging Fronts to Reaction–Diffusion Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We deal with a reaction–diffusion equation u t  = u xx  + f(u) which has two stable constant equilibria, u = 0, 1 and a monotone increasing traveling front solution u = φ(x + ct) (c > 0) connecting those equilibria. Suppose that u = a (0 < a < 1) is an unstable equilibrium and that the equation allows monotone increasing traveling front solutions u = ψ1(x + c 1 t) (c 1 < 0) and ψ2(x + c 2 t) (c 2 > 0) connecting u = 0 with u = a and u = a with u = 1, respectively. We call by an entire solution a classical solution which is defined for all \((x, t) \in \mathbb{R}^{2}\). We prove that there exists an entire solution such that for t≈ − ∞ it behaves as two fronts ψ1(x + c 1 t) and ψ2(x + c 2 t) on the left and right x-axes, respectively, while it converges to φ(x + ct) as t→∞. In addition, if c >  − c 1, we show the existence of an entire solution which behaves as ψ1( − x + c 1 t) in \(x\in(-\infty, (c_1+c)t/2]\) and φ(x + ct) in \(x\in[(c_1+c)t/2,\infty)\) for t≈ − ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson D.G., Weinberger H.F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein J.A. (ed), Partial Differential Equations and Related Topics Lecture Notes in Math Vol 446. Springer, Berlin, pp. 5–49

    Google Scholar 

  2. Aronson D.G., Weinberger H.F. (1978). Multidimensional nonlinear diffusion arising in population genetics. Adv. math. 30, 33–76

    Article  MATH  MathSciNet  Google Scholar 

  3. Bramson M. (1983). Convergence of solutions of the Kolmogorov equation to traveling waves, Mem. Am. Math. Soc. 44, (285).

  4. Chen X. (1997). Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Eq. 2, 125–160

    Google Scholar 

  5. Chen X., Guo J.-S. (2005). Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Diff. Eq. 212, 62–84

    Article  MATH  MathSciNet  Google Scholar 

  6. Ei S. (2000). The motion of weakly interacting pulses in reaction-diffusion systems. J. Dynam. Diff. Eq. 14, 85–137

    Article  MathSciNet  Google Scholar 

  7. Fife P.C., McLeod J.B. (1977). The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361

    Article  MATH  MathSciNet  Google Scholar 

  8. Freidlin M. (1985). Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab. 13, 639–675

    MATH  MathSciNet  Google Scholar 

  9. Fukao Y., Morita Y., Ninomiya H. (2004). Some entire solutions of the Allen-Cahn equation. Taiwan. J. Math. 8, 15–32

    MATH  MathSciNet  Google Scholar 

  10. Guo J.-S., Morita Y. (2005). Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations Discrete Contin. Dyn. Syst. 12, 193–212

    MATH  MathSciNet  Google Scholar 

  11. Hamel F., Nadirashvili N. (1999). Entire solutions of the KPP equation. Commun. Pure Appl. Math. 52, 1255–1276

    Article  MATH  MathSciNet  Google Scholar 

  12. Kametaka Y. (1976). On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type. Osaka J. Math. 13, 11–66

    MATH  MathSciNet  Google Scholar 

  13. Kawahara T., Tanaka M. (1983). Interactions of traveling fronts: An exact solutions of a nonlinear diffusion equations. Phys. Lett. 97A: 311–314

    MathSciNet  Google Scholar 

  14. Kolmogorov A., Petrovsky I., Piskunov N. (1937). Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bjul. Moskowskogo Gos. Univ. Serv. Int. Secur. A 1, 1–26

    MATH  Google Scholar 

  15. Uchiyama K. (1978). The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453–508

    MATH  MathSciNet  Google Scholar 

  16. Yagisita H. (2003). Backward global solutions characterizing annihilation dynamics of travelling fronts. Public Res. Inst. Math. Sci. 39, 117–164

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, Y., Ninomiya, H. Entire Solutions with Merging Fronts to Reaction–Diffusion Equations. J Dyn Diff Equat 18, 841–861 (2006). https://doi.org/10.1007/s10884-006-9046-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9046-x

Keywords

Ams 2000 Subject Classification

Navigation