Skip to main content
Log in

Center Manifold Theory for Functional Differential Equations of Mixed Type

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We study the behaviour of solutions to nonlinear autonomous functional differential equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation theorem for such equations. We illustrate the application range of our results by discussing an economic life-cycle model that gives rise to functional differential equations of mixed type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abell K.A., Elmer C.E., Humphries A.R., Vleck E.S.V. (2005). Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Sys. 4, 755–781

    Article  MATH  Google Scholar 

  2. Bart H., Gohberg I., Kaashoek M.A. (1986). Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators. J. Funct. Anal. 68, 1–42

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates P.W., Chen X., Chmaj A. (2003). Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35, 520–546

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates P.W., Chmaj A. (1999). A discrete convolution model for phase transitions. Arch. Rational Mech. Anal. 150, 281–305

    Article  MATH  MathSciNet  Google Scholar 

  5. Bell J. (1981). Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190

    Article  MATH  MathSciNet  Google Scholar 

  6. Benhabib J., Nishimura K. (1979). The Hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth. J. Econ. Theory 21, 421–444

    Article  MATH  MathSciNet  Google Scholar 

  7. Benzoni-Gavage S. (1998). Semi-discrete shock profiles for hyperbolic systems of conservation laws. Physica D 115, 109–124

    Article  MATH  MathSciNet  Google Scholar 

  8. Benzoni-Gavage S., Huot P. (2002). Existence of semi-discrete shocks. Discrete Contin. Dyn. Syst. 8, 163–190

    MATH  MathSciNet  Google Scholar 

  9. Benzoni-Gavage S., Huot P., Rousset F. (2003). Nonlinear stability of semidiscrete shock waves. SIAM J. Math. Anal. 35, 639–707

    Article  MATH  MathSciNet  Google Scholar 

  10. Cahn J.W. (1960). Theory of crystal growth and interface motion in crystalline materials. Acta Met. 8, 554–562

    Article  Google Scholar 

  11. Cahn J.W., Mallet-Paret J., Van Vleck E.S. (1999). Traveling wave solutions for systems of ODE’s on a two-dimensional spatial lattice. SIAM J. Appl. Math 59, 455–493

    Article  MATH  MathSciNet  Google Scholar 

  12. Chi H., Bell J., Hassard B. (1986). Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 24, 583–601

    Article  MATH  MathSciNet  Google Scholar 

  13. Chow S.N., Mallet-Paret J., Shen W. (1998). Traveling waves in lattice dynamical systems. J. Diff. Eq. 149, 248–291

    Article  MATH  MathSciNet  Google Scholar 

  14. Chua L.O., Roska T. (1993). The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156

    MATH  MathSciNet  Google Scholar 

  15. Crandall M.C., Rabinowitz P.H. (1978). The Hopf bifurcation theorem in infinite dimensions. Arch. Rat. Mech. Anal. 67, 53–72

    Article  MathSciNet  Google Scholar 

  16. d’Albis, H. and Augeraud-Veron, E. (2004). Competitive growth in a life-cycle model: existence and dynamics. Preprint.

  17. Diekmann O., van Gils S.A., Verduyn-Lunel S.M., Walther H.O. (1995). Delay Equations. Springer-Verlag, New York

    MATH  Google Scholar 

  18. Elmer C.E., Van Vleck E.S. (2002). A variant of Newton’s method for the computation of traveling waves of bistable differential-difference equations. J. Dyn. Diff. Eq. 14, 493–517

    Article  MATH  Google Scholar 

  19. Elmer C.E., Van Vleck E.S. (2005). Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs. Nonlinearity 18, 1605–1628

    MATH  Google Scholar 

  20. Erneux T., Nicolis G. (1993). Propagating waves in discrete bistable reaction-diffusion systems. Physica D 67, 237–244

    Article  MATH  MathSciNet  Google Scholar 

  21. Fife P., McLeod J. (1977). The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal. 65, 333–361

    MathSciNet  Google Scholar 

  22. Frasson M.V.S., Verduyn-Lunel S.M. (2003). Large time behaviour of linear functional differential equations. Integral Eq. Operat. Theory 47, 91–121

    Article  MATH  MathSciNet  Google Scholar 

  23. Hankerson D., Zinner B. (1993). Wavefronts for a cooperative tridiagonal system of differential equations. J. Dyn. Diff. Eq. 5, 359–373

    Article  MATH  MathSciNet  Google Scholar 

  24. Härterich J., Sandstede B., Scheel A. (2002). Exponential dichotomies for linear non-autonomous functional differential equations of mixed type. Indiana Univ. Math. J. 51, 1081–1109

    Article  MATH  MathSciNet  Google Scholar 

  25. Hewitt E., Stromberg K. (1965). Real and Abstract Analysis, Springer-Verlag, Berlin

    MATH  Google Scholar 

  26. Hupkes H.J., Verduyn-Lunel S.M. (2005). Analysis of Newton’s method to compute travelling waves in discrete media. J. Dyn. Diff. Eq. 17, 523–572

    Article  MATH  MathSciNet  Google Scholar 

  27. Iooss G. (2000). Traveling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866

    Article  MATH  MathSciNet  Google Scholar 

  28. Iooss G., Kirchgässner K. (2000). Traveling waves in a chain of coupled nonlinear oscillators. Comm. Math. Phys. 211, 439–464

    Article  MATH  MathSciNet  Google Scholar 

  29. Kaashoek M., Verduyn-Lunel S.M. (1994). An integrability condition on the resolvent for hyperbolicity of the semigroup. J. Diff. Eq. 112, 374–406

    Article  MATH  MathSciNet  Google Scholar 

  30. Keener J., Sneed J. (1998). Mathematical Physiology, Springer-Verlag, New York

    MATH  Google Scholar 

  31. Keener J.P. (1987). Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572

    Article  MATH  MathSciNet  Google Scholar 

  32. Laplante J.P., Erneux T. (1992). Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96:4931–4934

    Article  Google Scholar 

  33. Mallet-Paret, J. (1996). Spatial patterns, spatial chaos and traveling waves in lattice differential equations. In Stochastic and Spatial Structures of Dynamical Systems, Royal Netherlands Academy of Sciences. Proceedings, Physics Section. Series 1, Vol. 45. Amsterdam, pp. 105–129.

  34. Mallet-Paret J. (1999). The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Diff. Eq. 11, 1–48

    Article  MATH  MathSciNet  Google Scholar 

  35. Mallet-Paret J. (1999). The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq. 11, 49–128

    Article  MATH  MathSciNet  Google Scholar 

  36. Mallet-Paret, J. (2001). Crystallographic pinning: direction dependent pinning in lattice differential equations. Preprint.

  37. Mallet-Paret, J. and Verduyn-Lunel, S. M., (to appear) Exponential dichotomies and Wiener–Hopf factorizations for mixed-type functional differential equations. J. Diff. Eq.

  38. Mielke A. (1986). A reduction principle for nonautonomous systems in infinite-dimensional spaces. J. Diff. Eq. 65, 68–88

    Article  MATH  MathSciNet  Google Scholar 

  39. Mielke A. (1994). Floquet theory for, and bifurcations from spatially periodic patterns. Tatra Mountains Math. Publ. 4, 153–158

    MATH  MathSciNet  Google Scholar 

  40. Rustichini A. (1989). Hopf bifurcation for functional-differential equations of mixed type. J. Dyn. Diff. Eq. 1, 145–177

    Article  MATH  MathSciNet  Google Scholar 

  41. Vanderbauwhede A., Iooss G. (1992). Center manifold theory in infinite dimensions. Dyn. Reported: Expositions Dyn. Sys. 1, 125–163

    MathSciNet  Google Scholar 

  42. Vanderbauwhede A., van Gils S.A. (1987). Center manifolds and contractions on a scale of banach spaces. J. Funct. Anal. 72, 209–224

    Article  MATH  MathSciNet  Google Scholar 

  43. Widder D.V. (1946). The Laplace Transform. Princeton Univ. Press, Princeton NJ

    MATH  Google Scholar 

  44. Wu J., Zou X. (1997). Asymptotic and periodic boundary value problems of mixed FDE’s and wave solutions of lattice differential equations. J. Diff. Eq. 135, 315–357

    Article  MATH  MathSciNet  Google Scholar 

  45. Zinner B. (1992). Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Diff. Eq. 96, 1–27

    Article  MATH  MathSciNet  Google Scholar 

  46. Zinner B., Harris G., Hudson W. (1993). Traveling wavefronts for the discrete Fisher’s equations. J. Diff. Eq. 105, 46–62

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Hupkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupkes, H.J., Lunel, S.M.V. Center Manifold Theory for Functional Differential Equations of Mixed Type. J Dyn Diff Equat 19, 497–560 (2007). https://doi.org/10.1007/s10884-006-9055-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9055-9

Keywords

Navigation