Skip to main content
Log in

A robust algorithm for generalized geometric programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Most existing methods of global optimization for generalized geometric programming (GGP) actually compute an approximate optimal solution of a linear or convex relaxation of the original problem. However, these approaches may sometimes provide an infeasible solution, or far from the true optimum. To overcome these limitations, a robust solution algorithm is proposed for global optimization of (GGP) problem. This algorithm guarantees adequately to obtain a robust optimal solution, which is feasible and close to the actual optimal solution, and is also stable under small perturbations of the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avriel M. and Williams A.C. (1971). An extension of geometric programming with applications in engineering optimization. J. Eng. Math. 5(3): 187–199

    Article  Google Scholar 

  2. Jefferson T.R. and Scott C.H. (1978). Generalized geometric programming applied to problems of optimal control: I. Theory. J. Optim. Theory Appl. 26: 117–129

    Article  Google Scholar 

  3. Nand K.J. (1995). Geometric programming based robot control design. Comput. Indust. Eng. 29(1–4): 631–635

    Google Scholar 

  4. Das K., Roy T.K. and Maiti M. (2000). Multi-item inventory model with under imprecise objective and restrictions: a geometric programming approach. Production Plan. Control 11(8): 781–788

    Article  Google Scholar 

  5. Jae Chul C. and Bricker Dennis L. (1996). Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 23(10): 957–961

    Article  Google Scholar 

  6. EI Barmi H. and Dykstra R.L. (1994). Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Stat. Probab. Lett. 21: 121–130

    Article  Google Scholar 

  7. Bricker D.L., Kortanek K.O. and Xu L. (1995). Maximum Likelihood Estimates with Order Restrictions on Probabilities and Odds Ratios: A Geometric Programming Approach. Applied Mathematical and Computational Sciences, the University of IA, Iowa City, IA

  8. Jagannathan R. (1990). A stochastic geometric programming problem with multiplicative recourse. Oper. Res. Lett. 9: 99–104

    Article  Google Scholar 

  9. Sönmez A.I., Baykasoglu A., Dereli T. and Filiz I.H. (1999). Dynamic optimization of multipass milling operations via geometric programming. Int. J. Machine Tools Manuf. 39: 297–320

    Article  Google Scholar 

  10. Scott C.H. and Jefferson T.R. (1995). Allocation of resources in project management. Int. J. Syst. Sci. 26: 413–420

    Article  Google Scholar 

  11. Maranas C.D. and Floudas C.A. (1997). Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4): 351–369

    Article  Google Scholar 

  12. Rijckaert M.J. and Martens X.M. (1974). Analysis and optimization of the Williams-Otto process by geometric programming. AICHE J 20(4): 742–750

    Article  Google Scholar 

  13. Shen P. and Zhang K. (2004). Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150: 99–114

    Article  Google Scholar 

  14. Wang Y., Zhang K. and Gao Y. (2004). Global optimization of generalized geometric programming. Comput. Math. Appl. 48: 1505–1516

    Article  Google Scholar 

  15. Tuy H. (2005). Robust solution of nonconvex global optimization problems. J. Glob. Optim. 32: 357–374

    Google Scholar 

  16. Tuy H. (2000). Monotonic optimization: problems and solution approaches. SIAM J. Optim. 11(2): 464–494

    Article  Google Scholar 

  17. Tuy H., Al-Khayyal F. and Thach P.T. (2005). Monotonic optimization: branch and cut methods. In: Audet, C., Hansen, P., and Savard, G. (eds) Essays and Surveys on Global Optimization, pp 39–38. Springer, Berlin

    Chapter  Google Scholar 

  18. Qu S.-J., Zhang K.-C. and Ji Y. (2007). A new global optimization algorithm for signomial geometric programming via Lagrangian relaxation. Appl. Math. Comput. 184(2): 886–894

    Article  Google Scholar 

  19. Wang Y. and Liang Z. (2005). A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168: 722–737

    Article  Google Scholar 

  20. Shen P. and Jiao H. (2006). A new rectangle branch-and-pruning approach for generalized geometric programming. Appl. Math. Comput. 183: 1027–1038

    Article  Google Scholar 

  21. Tuy H. (2005). Polynomial optimization: a robust approach. Pacific J. Optim. 1: 357–374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, P., Ma, Y. & Chen, Y. A robust algorithm for generalized geometric programming. J Glob Optim 41, 593–612 (2008). https://doi.org/10.1007/s10898-008-9283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9283-0

Keywords

Navigation