Skip to main content
Log in

On the stability of the linear functional equation in a single variable on complete metric groups

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we obtain a result on Hyers–Ulam stability of the linear functional equation in a single variable \(f(\varphi (x)) = g(x) \cdot f(x)\) on a complete metric group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

    Google Scholar 

  2. Agarwal, R.P., Xu, B., Zhang, W.: Stability of functional equations in single variable. J. Math. Anal. Appl. 288, 852–869 (2003)

    Article  Google Scholar 

  3. Brydak, J.: On the stability of the functional equation \(\varphi [f(x)]=g(x)\varphi (x)+F(x)\). Proc. Am. Math. Soc. 26, 455–460 (1970)

    Google Scholar 

  4. Brzdek, J., Brillouët-Bellout, N., Ciepliński, K.: On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. (2012) Art ID. 716936

  5. Brzdek, J., Popa, D., Xu, B.: The Hyers-Ulam stability of linear equations of higher orders. Acta Math. Hung. 120, 1–8 (2008)

    Article  Google Scholar 

  6. Brzdek, J., Jung, S.-M.: A note on stability of an operator equation of the second order. Abstr. Appl. Anal. (2011). Art. ID 602713, 15 pp

  7. Brzdek, J., Popa, D., Xu, B.: On approximate solutions of the linear functional equation of higher order. J. Math. Anal. Appl. 373, 680–689 (2011)

    Article  Google Scholar 

  8. Brzdek, J., Popa, D., Xu, B.: Note on nonstability of the linear functional equation of higher order. Comput. Math. Appl. 62, 2648–2657 (2011)

    Article  Google Scholar 

  9. Brzdek, J., Popa, D., Xu, B.: Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 74, 324–330 (2011)

    Article  Google Scholar 

  10. Castillo, E., Ruiz-Cobo, M.R.: Functional Equations and Modelling in Science and Engineering. Marcel Dekker, New York (1992)

    Google Scholar 

  11. Cesaro, L.: Optimization Theory and Applications. Problems with Ordinary Differential Equations. Springer, New York (1983)

    Google Scholar 

  12. Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge (2002)

    Book  Google Scholar 

  13. Jung, S.-M.: On the modified Hyers–Ulam–Rassias stability of the functional equation for gamma function. Mathematica (Cluj) 39(62), 235–239 (1997)

    Google Scholar 

  14. Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)

    Google Scholar 

  15. Kuczma, M.: Functional Equations in a Single Variable. Państwowe Wydawnictwo Naukowe, Warszawa (1968)

    Google Scholar 

  16. Pardalos, P.M., Coleman, T.F. (eds.): In: Lectures on Global Optimization. Fields Institute Communications. American Mathematical Society (2009)

  17. Polya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis I. Julius Springer, Berlin (1925)

    Book  Google Scholar 

  18. Rockafellar, T.T.: Convex Analysis. Princeton University Press, Princeton (1972)

    Google Scholar 

  19. Trif, T.: On the stability of a general gamma-type functional equation. Publ. Math. Debrecen 60, 47–61 (2002)

    Google Scholar 

  20. Zwillinger, D.: Standard Mathematical Tables and Formulae, 31st edn. Chapman & Hall/CRC, Boca Raton (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Mo Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SM., Popa, D. & Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J Glob Optim 59, 165–171 (2014). https://doi.org/10.1007/s10898-013-0083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0083-9

Keywords

Mathematics Subject Classification

Navigation