Skip to main content
Log in

Properties of the Mittag-Leffler Relaxation Function

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Mittag-Leffler relaxation function, E α (−x), with 0 ≤ α ≤ 1, which arises in the description of complex relaxation processes, is studied. A relation that gives the relaxation function in terms of two Mittag-Leffler functions with positive arguments is obtained, and from it a new form of the inverse Laplace transform of E α (−x) is derived and used to obtain a new integral representation of this function, its asymptotic behaviour and a new recurrence relation. It is also shown that the fastest initial decay of E α (−x) occurs for α =1/2, a result that displays the peculiar nature of the interpolation made by the Mittag-Leffler relaxation function between a pure exponential and a hyperbolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.M. Mittag-Leffler (1903) C. R. Acad. Sci. Paris (Ser. II) 136 70

    Google Scholar 

  2. G.M. Mittag-Leffler (1903) C. R. Acad. Sci. Paris (Ser. II) 137 554

    Google Scholar 

  3. A. Érdelyi W. Magnus F. Oberhettinger F.G. Tricomi (1955) Higher Transcendental Functions McGraw-Hill New York

    Google Scholar 

  4. K.S. Miller (1993) Integral Transform Spec. Funct. 1 41

    Google Scholar 

  5. R. Gorenflo J. Loutchko Y. Luchko (2002) Fract Calc. Appl. Anal. 5 491

    Google Scholar 

  6. W.G. Glöckle T.F. Nonnenmacher (1995) Biophys J. 68 46 Occurrence Handle7711266

    PubMed  Google Scholar 

  7. R. Hilfer L. Anton (1995) Phys Rev E 51 R848 Occurrence Handle10.1103/PhysRevE.51.R848

    Article  Google Scholar 

  8. K. Weron M. Kotulski (1996) Physica A 232 180 Occurrence Handle10.1016/0378-4371(96)00209-9

    Article  Google Scholar 

  9. K. Weron A. Klauzer (2000) Ferroelectrics 236 59

    Google Scholar 

  10. R. Metzler J. Klafter (2000) Phys. Rep. 339 1 Occurrence Handle10.1016/S0370-1573(00)00070-3

    Article  Google Scholar 

  11. R. Hilfer (2002) Chem. Phys. 284 399 Occurrence Handle10.1016/S0301-0104(02)00670-5

    Article  Google Scholar 

  12. R.K. Saxena A.M. Mathai H.J. Haubold (2002) Astrophys. Space Sci. 282 281 Occurrence Handle10.1023/A:1021175108964

    Article  Google Scholar 

  13. R. Metzler J. Klafter (2002) J. Non-Cryst. Solids 305 81 Occurrence Handle10.1016/S0022-3093(02)01124-9

    Article  Google Scholar 

  14. R. Metzler J. Klafter (2003) Biophys. J. 85 2776 Occurrence Handle14507739

    PubMed  Google Scholar 

  15. L. Sjögren (2003) Physica A 322 81 Occurrence Handle10.1016/S0378-4371(02)01832-0

    Article  Google Scholar 

  16. D.S.F. Crothers D. Holland Y.P. Kalmykov W.T. Coffey (2004) J. Mol. Liquids 114 27 Occurrence Handle10.1016/j.molliq.2004.02.003

    Article  Google Scholar 

  17. M.N. Berberan-Santos (2005) J. Math. Chem. 38 165 Occurrence Handle10.1007/s10910-005-4961-3

    Article  Google Scholar 

  18. M.N. Berberan-Santos (2005) J. Math. Chem. 38 265 Occurrence Handle10.1007/s10910-005-5412-x

    Article  Google Scholar 

  19. H. Pollard (1948) Bull. Am. Math. Soc. 54 1115

    Google Scholar 

  20. W. Feller (1949) Trans. Am Math. Soc. 67 98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário N. Berberan-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berberan-Santos, M.N. Properties of the Mittag-Leffler Relaxation Function. J Math Chem 38, 629–635 (2005). https://doi.org/10.1007/s10910-005-6909-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-6909-z

Keywords

AMS (MOS) classification

Navigation