Skip to main content
Log in

Dynamic analysis of Michaelis–Menten chemostat-type competition models with time delay and pulse in a polluted environment

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a new Michaelis–Menten type chemostat model with time delay and pulsed input nutrient concentration in a polluted environment is considered. We obtain a ‘microorganism-extinction’ semi-trivial periodic solution and establish the sufficient conditions for the global attractivity of the semi-trivial periodic solution. By use of new computational techniques for impulsive differential equations with delay, we prove and support with numerical calculations that the system is permanent. Our results show that time delays and the polluted environment can lead the microorganism species to be extinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novick A., Szilard L.: Description of the chemostat. Science 112, 715–716 (1950)

    Article  CAS  Google Scholar 

  2. Dykhuizen D.E., Hartl D.L.: Selection in chemostats. Microbiol. Rev. 47, 150–168 (1983)

    CAS  Google Scholar 

  3. Hsu S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9(2), 115–132 (1980)

    Article  Google Scholar 

  4. Butler G.J., Hsu S.B., Waltman P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45(3), 435–449 (1985)

    Article  Google Scholar 

  5. Pilyugin S.S., Waltman P.: Competition in the unstirred chemostat with periodic input and washout. SIAM J. Appl. Math. 59(4), 1157–1177 (1999)

    Article  Google Scholar 

  6. Smith H.L., Waltman P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  7. Monod J.: La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79(19), 390–401 (1950)

    CAS  Google Scholar 

  8. Hsu S.B., Li C.C.: A discrete-delayed model with plasmid-bearing, plasmid-free competition in a chemostat. Discrete Contin. Dyn. Syst. Ser. B 5, 699–718 (2005)

    Article  Google Scholar 

  9. Hsu S.B., Hubbell S.P., Waltman P.: A mathematical theory for single-nutrient competition in the continuous cultures of micro-organisms. SIAM J. Appl. Math. 32(2), 366–383 (1977)

    Article  Google Scholar 

  10. Hsu S.B., Tzeng Y.H.: Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Math. Biosci. 179, 183–206 (2002)

    Article  CAS  Google Scholar 

  11. Wolkowicz G.S.K., Xia H.Y.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57(4), 1019–1043 (1997)

    Article  Google Scholar 

  12. Caperon J.: Time lag in population growth response of Isochrysis galbana to a variable nitrate environment. Ecology 50(2), 188–192 (1969)

    Article  CAS  Google Scholar 

  13. Freedman H.I., So J.W-H., Waltman P.: Coexistence in a model of competition in the chemostat incorporating discrete delays. SIAM J. Appl. Math. 49(3), 859–870 (1989)

    Article  Google Scholar 

  14. Ruan S.G., Wolkowicz G.S.K.: Bifurcation analysis of a chemostat model with a distributed delay. J. Math. Anal. Appl. 204(3), 786–812 (1996)

    Article  Google Scholar 

  15. Xia H.Y., Wolkowicz G.S.K., Wang L.: Transient oscillations induced by delayed growth response in the chemostat. J. Math. Biol. 50(5), 489–530 (2005)

    Article  Google Scholar 

  16. Hale J.K., Somolinas A.S.: Competition for fluctuating nutrient. J. Math. Biol. 18(3), 255–280 (1983)

    Article  Google Scholar 

  17. Wolkowicz G.S.K., Zhao X.Q.: N-species competition in a periodic chemostat. Differential Integral Equations. 11(3), 465–491 (1998)

    Google Scholar 

  18. Lakshmikantham V., Bainov D., Simeonov P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Google Scholar 

  19. Haddad W.M., Chellaboina V., Nersesov S.G.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)

    Google Scholar 

  20. Zavalishchin S.T., Sesekin A.N.: Dynamic Impulse Systems. Theory and Applications. Mathematics and Its Applications, vol 394. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  21. W.B. Wang, J.H. Shen, J.J.Nieto, Permanence and periodic solution of predator prey system with Holling type functional response and impulses. Discrete Dyn. Nat. Soc. Art. ID 81756, 15 pp (2007). doi:10.1155/2007/81756

  22. Dai B., Su H., Hu D.: Periodic solution of a delayed ratio-dependent predator–prey model with monotonic functional response and impulse. Nonlinear Anal. 70(1), 126–134 (2009). doi:10.1016/j.na.2007.11.036

    Article  Google Scholar 

  23. Nieto J.J., Rodriguez-Lopez R.: New comparison results for impulsive integro-differential equations and applications. J. Math. Anal. Appl. 328, 1343–1368 (2007)

    Article  Google Scholar 

  24. Liu B., Teng Z.D., Liu W.B.: Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos Solitons Fractals 31(2), 356–370 (2007)

    Article  Google Scholar 

  25. Liu B., Zhang Y.J., Chen L.S.: The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management. Nonlinear Anal. Real World Appl. 6(2), 227–243 (2005)

    Article  Google Scholar 

  26. J.H. Shen, J.L. Li: Existence and global attractivity of positive periodic solutions for impulsive predator–prey model with dispersion and time delays. Nonlinear Anal. Real World Appl. 10(1), 227–243 (2009). doi:110.1016/j.nonrwa

    Article  Google Scholar 

  27. Chu J., Nieto J.J.: Impulsive periodic solutions of first order singular differential equations. Bull. London Math. Soc. 40, 143–150 (2008)

    Article  Google Scholar 

  28. Georgescu P., Morosanu G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190, 790–803 (2007)

    Article  Google Scholar 

  29. Jianng G., Lu Q., Qian L.: Chaos and its control in an impulsive differential system. Chaos Solitons Fractals 34, 1135–1147 (2007)

    Article  Google Scholar 

  30. Meng X., Jiao J., Chen L.: The dynamics of an age structured predator–prey model with disturbing pulse and time delays. Nonlinear Anal. Real World Appl. 9, 547–561 (2008)

    Article  Google Scholar 

  31. Meng X., Chen L.: Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination. Taiwanese J. Math. 12(5), 1107–1122 (2008)

    Google Scholar 

  32. Zhou J., Xiang L., Liu Z.: Synchronization in complex delayed dynamical networks with impulsive effects. Physica A Stat. Mech. Appl. 384, 684–692 (2007)

    Article  Google Scholar 

  33. Sun S.L., Chen L.S.: Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. J. Math. Chem. 42(4), 837–848 (2007)

    Article  CAS  Google Scholar 

  34. Sun M.J., Chen L.S.: Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input. J. Math. Chem. 43(2), 447–456 (2008)

    Article  CAS  Google Scholar 

  35. Pang G.P., Liang Y.L., Wang F.Y.: Analysis of Monod type food chain chemostat with k-times periodically pulsed input. J. Math. Chem. 43(4), 1371–1388 (2008). doi:10.1007/s10910-007-9258-2

    Article  CAS  Google Scholar 

  36. Song X., Zhao Z., Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input. Discrete Dyn. Nat. Soc. Art. ID 38310, 14 pp (2006). doi:10.1155/DDNS/2006/38310

  37. Wang F., Hao C., Chen L.: Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout. Chaos Solitons Fractals 32, 181–194 (2007)

    Article  CAS  Google Scholar 

  38. Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Li, Z. & Nieto, J.J. Dynamic analysis of Michaelis–Menten chemostat-type competition models with time delay and pulse in a polluted environment. J Math Chem 47, 123–144 (2010). https://doi.org/10.1007/s10910-009-9536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9536-2

Keywords

Navigation