Skip to main content
Log in

High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In the present paper we develop a high algebraic order multistep method. The characteristic property of the new proposed method is the requirement of vanishing the phase-lag and its derivatives. The new method is applied for the approximate solution of the radial Schrödinger equation. The efficiency of the new methodology is proved via error analysis and numerical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ixaru L.Gr., Micu M.: Topics in Theoretical Physics Central. Institute of Physics, Bucharest (1978)

    Google Scholar 

  2. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  3. Prigogine I.: Stuart Rice (Eds): Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics. Wiley, New York (1997)

    Google Scholar 

  4. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  5. T.E. Simos, Atomic structure computations in chemical modelling: applications and theory (Editor: A. Hinchliffe, UMIST). R. Soc. Chem. 38–142(2000)

  6. Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, chemical modelling: application and theory. R. Soc. Chem. 2, 170–270 (2002)

    CAS  Google Scholar 

  7. T.E. Simos: Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990

  8. Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  9. Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Article  Google Scholar 

  10. Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  Google Scholar 

  11. Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Article  Google Scholar 

  12. Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Article  Google Scholar 

  13. Simos T.E.: A high-order predictor-corrector method for periodic IVPs. Appl. Math. Lett. 6(5), 9–12 Sep (1993)

    Article  Google Scholar 

  14. Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Article  Google Scholar 

  15. Simos T.E.: An explicit high-order predictor-corrector method for periodic initial-value problems. Math. Models & Methods Appl. Sci. 5(2), 159–166 (1995)

    Article  Google Scholar 

  16. Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Article  Google Scholar 

  17. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)

    Article  Google Scholar 

  18. Simos T.E.: A modified Runge-Kutta method for the numerical solution of ODE’s with oscillation solutions. Appl. Math. Lett. 9(6), 61–66 (1996)

    Article  Google Scholar 

  19. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1-3), 23–37 (1998)

    Article  CAS  Google Scholar 

  20. Simos T.E.: An embedded Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation. Int. J. Mod. Phys. C 11, 1115–1133 (2000)

    Article  Google Scholar 

  21. Simos T.E., Vigo-Aguiar Jesus: A new modified Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Int. J. Mod. Phys. C 11, 1195–1208 (2000)

    Article  Google Scholar 

  22. Simos T.E., Vigo-Aguiar Jesus: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation and related problems. Comput. Chem. 25, 275–281 (2001)

    Article  CAS  Google Scholar 

  23. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  24. Simos T.E., Williams P.S.: A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  25. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  26. Dormand J.R., Prince P.J.: A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 1926 (1980)

    Article  Google Scholar 

  27. Anastassi Z.A., Simos T.E.: Special optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Mod. Phys. C 15, 1–15 (2004)

    Article  Google Scholar 

  28. Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 31–37 (2004)

    Article  Google Scholar 

  29. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  30. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  31. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)

    CAS  Google Scholar 

  32. Papadopoulos D.F, Anastassi Z.A., Simos T.E.: A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)

    Article  CAS  Google Scholar 

  33. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  34. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  35. Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  36. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  37. Kalogiratou Zacharoula, Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Article  Google Scholar 

  38. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  39. Simos T.E., Raptis A.D.: Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation. Computing 45, 175–181 (1990)

    Article  Google Scholar 

  40. Simos T.E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 39, 135–140 (1991)

    Article  Google Scholar 

  41. Simos T.E.: A Numerov-type method for the numerical-solution of the radial Schrödinger-equation. Appl. Numer. Math. 7(2), 201–206 (1991)

    Article  Google Scholar 

  42. Simos T.E.: Explicit two-step methods with minimal phase-lag for the numerical-integration of special second-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Article  Google Scholar 

  43. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Article  Google Scholar 

  44. Simos T.E.: An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Appl. Math. Comput. 49, 261–268 (1992)

    Article  Google Scholar 

  45. Simos T.E.: High—order methods with minimal phase-lag for the numerical integration of the special second order initial value problem and their application to the one-dimensional Schrödinger equation. Comput. Phys. Commun. 74, 63–66 (1993)

    Article  Google Scholar 

  46. Simos T.E.: A new variable-step method for the numerical-integration Of special 2Nd-order initial-value problems and their application to the one-dimensional SchrÖdinger-equation. Appl. Math. Lett. 6(3), 67–73 (1993)

    Article  Google Scholar 

  47. Simos T.E.: A family of two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Jpn. J. Ind. Appl. Math. 10, 289–297 (1993)

    Article  Google Scholar 

  48. Simos T.E.: A predictor-corrector phase-fitted method for y′′ = f(x, y). Math. Comput. Simul. 35, 153–159 (1993)

    Article  Google Scholar 

  49. Simos T.E.: A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems. Proc. R. Soc. Lond. Ser. A 441, 283–289 (1993)

    Article  Google Scholar 

  50. Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)

    Article  Google Scholar 

  51. Simos T.E.: Some new variable-step methods with minimal phase-lag for the numerical integration of special 2nd-order initial value problems. Appl. Math. Comput. 64, 65–72 (1994)

    Article  Google Scholar 

  52. Simos T.E., Mousadis G.: Some new Numerov-type methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation. Mole. Phys. 83, 1145–1153 (1994)

    Article  CAS  Google Scholar 

  53. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrdinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Article  Google Scholar 

  54. Simos T.E.: Predictor corrector phase-fitted methods for Y′′ = F(X, Y) and an application to the Schrödinger-equation. Int. J. Quantum Chem. 53(5), 473–483 (1995)

    Article  CAS  Google Scholar 

  55. Simos T.E.: Some low-order two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of the radial Schrödinger equation. Int. J. Mod. Phys. A 10, 2431–2438 (1995)

    Article  Google Scholar 

  56. Simos T.E.: A new Numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation. Int. J. Mod. Phys. C-Phys. Comput. 7(1), 33–41 (1996)

    Article  Google Scholar 

  57. Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVPs with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)

    Article  Google Scholar 

  58. Simos T.E.: Accurate computations for the elastic scattering phase-shift problem. Comput. Chem. 21, 125–128 (1996)

    Article  Google Scholar 

  59. Simos T.E.: An eighth order method with minimal phase-lag for accuarate computations for the elastic scattering phase-shift problem. Int. J. Mod. Phys. C 7, 825–835 (1996)

    Article  Google Scholar 

  60. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    Article  CAS  Google Scholar 

  61. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Article  Google Scholar 

  62. Simos T.E.: New Numerov-type methods for computing eigenvalues, resonances and phase shifts of the radial Schrödinger equation. Int. J. Quantum Chem. 62, 467–475 (1997)

    Article  CAS  Google Scholar 

  63. Simos T.E.: New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation. Phys. Scr. 55, 644–650 (1997)

    Article  CAS  Google Scholar 

  64. Simos T.E.: Eighth order methods for elastic scattering phase-shifts. Int. J. Theor. Phys. 36, 663–672 (1997)

    Article  Google Scholar 

  65. Simos T.E., Tougelidis G.: An explicit eighth order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Mater. Sci. 8, 317–326 (1997)

    Article  Google Scholar 

  66. Simos T.E., Tougelidis G.: An explicit eighth order method with minimal phase-lag for accurate computations of eigenvalues, resonances and phase shifts. Comput. Chem. 21, 327–334 (1997)

    Article  CAS  Google Scholar 

  67. Simos T.E.: Eighth order method for accurate computations for the elastic scattering phase-shift problem. Int. J. Quantum Chem. 68, 191–200 (1998)

    Article  CAS  Google Scholar 

  68. Simos T.E.: New embedded explicit methods with minimal phase-lag for the numerical integration of the Schrödinger equation. Comp. Chem. 22, 433–440 (1998)

    Article  CAS  Google Scholar 

  69. Simos T.E.: High-algebraic, high-phase-lag methods for accurate computations for the elastic-scattering phase shift problem. Can. J. Phys. 76, 473–493 (1998)

    Article  CAS  Google Scholar 

  70. Simos T.E.: High algebraic order methods with minimal phase-lag for accurate solution of the Schrödinger equation. Int. J. Mod. Phys. C 9, 1055–1071 (1998)

    Article  Google Scholar 

  71. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Article  Google Scholar 

  72. Simos T.E.: A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 106, 245–264 (1999)

    Article  Google Scholar 

  73. Simos T.E.: High algebraic order explicit methods with reduced phase-lag for an efficient solution of the Schrödinger equation. Int. J. Quantum Chem. 73, 479–496 (1999)

    Article  CAS  Google Scholar 

  74. Simos T.E.: Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrd̈inger equation. Comput. Chem. 23, 439–446 (1999)

    Article  CAS  Google Scholar 

  75. Simos T.E.: Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 119, 32–44 (1999)

    Article  CAS  Google Scholar 

  76. Simos T.E.: High algebraic order methods for the numerical solution of the Schrödinger equation. Mole. Simul. 22, 303–349 (1999)

    Article  CAS  Google Scholar 

  77. Avdelas G., Konguetsof A., Simos T.E.: A family of hybrid eighth order methods with minimal phase-lag for the numerical solution of the Schrödinger equation and related problems. Int. J. Mod. Phys. C 11, 415–437 (2000)

    Google Scholar 

  78. Avdelas G., Simos T.E.: Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation. Phys. Rev. E 62, 1375–1381 (2000)

    Article  CAS  Google Scholar 

  79. Avdelas G., Simos T.E.: On variable-step methods for the numerical solution of Schrödinger equation and related problems. Comput. Chem. 25, 3–13 (2001)

    Article  CAS  Google Scholar 

  80. Simos T.E., Williams P.S.: New insights in the development of Numerov-type methods with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Chem. 25, 77–82 (2001)

    Article  CAS  Google Scholar 

  81. Avdelas G., Konguetsof A., Simos T.E.: A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 136, 14–28 (2001)

    Article  CAS  Google Scholar 

  82. Simos T.E., Vigo-Aguiar J.: A symmetric high-order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 12, 1035–1042 (2001)

    Article  Google Scholar 

  83. Simos T.E., Vigo-Aguiar J.: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. C 12, 1453–1476 (2001)

    Article  Google Scholar 

  84. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  85. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  86. Tsitouras Ch., Simos T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput. 131, 201–211 (2002)

    Article  Google Scholar 

  87. Avdelas G., Konguetsof A., Simos T.E.: A generator of dissipative methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 148, 59–73 (2002)

    Article  CAS  Google Scholar 

  88. Konguetsof A., Simos T.E.: P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation. Comput. Chem. 26, 105–111 (2002)

    Article  CAS  Google Scholar 

  89. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  90. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  91. Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  92. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  93. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  94. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  95. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  96. Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  97. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  98. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep.-Rev. Sect. Phys. Lett. 482, 1–240 (2009)

    Google Scholar 

  99. Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  100. Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 preface. J. Math. Chem. 46(3), 727–728 (2009)

    Article  CAS  Google Scholar 

  101. Simos T.E., Psihoyios G.: Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

    Article  Google Scholar 

  102. Simos T.E., Psihoyios G.: Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12-16 September 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)

    Article  Google Scholar 

  103. Simos T.E., Vigo-Aguiar J.: Special issue—selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20-25 September 2002—preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)

    Article  Google Scholar 

  104. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  Google Scholar 

  105. Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  106. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  107. Quinlan G.D., Tremaine S.: Astron. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alolyan, I., Simos, T.E. High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J Math Chem 48, 925–958 (2010). https://doi.org/10.1007/s10910-010-9718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9718-y

Keywords

Navigation