Skip to main content
Log in

A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A family of high algebraic order ten-step methods is obtained in this paper. The new developed methods have vanished phase-lag (the first one) and phase-lag and its first derivative (the second one). We apply the new developed methods to the resonance problem of the radial Schrödinger equation. The efficiency of the new proposed methods is shown via error analysis and numerical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ixaru L.Gr., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  2. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  3. Prigogine, I., Rice, S. (eds): Advances in Chemical Physics Vol 93: New Methods in Computational Quantum Mechanics. Wiley, London (1997)

    Google Scholar 

  4. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  5. T.E. Simos, Atomic structure computations in chemical modelling: applications and theory, ed. by A. Hinchliffe, UMIST, The Royal Society of Chemistry, pp. 38–142 (2000)

  6. Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. Chem. Model. Appl. Theory Roy. Soc. Chem. 2, 170–270 (2002)

    CAS  Google Scholar 

  7. T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)

  8. Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  9. Dormand J.R., Prince P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  10. Simos T.E., Vigo-Aguiar Jesus: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation and related problems. Comput Chem 25, 275–281 (2001)

    Article  CAS  Google Scholar 

  11. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  12. Simos T.E., Williams P.S.: A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  13. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  14. Anastassi Z.A., Simos T.E.: Special Optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Mod. Phys. C 15, 1–15 (2004)

    Article  Google Scholar 

  15. Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted Explicit Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 31–37 (2004)

    Article  Google Scholar 

  16. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  17. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  18. Tselios K., Simos T.E.: Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Phys. Lett. A 363(1–2), 38–47 (2007)

    Article  CAS  Google Scholar 

  19. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)

    CAS  Google Scholar 

  20. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)

    Article  CAS  Google Scholar 

  21. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  22. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation. J. Mol. Model. 16(8), 1339–1346 (2010)

    Article  CAS  Google Scholar 

  23. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: The use of phase-lag and amplification error derivatives in the numerical integration of ODES with oscillating solutions. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 and 2. AIP Conference Proceedings 1168, 547–549 (2009)

    Google Scholar 

  24. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A zero dispersion RKN method for the numerical integration of initial value problems with oscillating solutions. Conference Information: International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 and 2. AIP Conference Proceedings 1168, 550–553 (2009)

    Google Scholar 

  25. Monovasilis T., Kalogiratou Z., Simos T.E.: A phase-fitted symplectic partitioned Runge-Kutta Methods for the numerical solution of the Schrödinger equation. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, vols. 1 And 2. AIP Conference Proceedings 1168, 1595–1599 (2009)

    Google Scholar 

  26. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta-Nyström method for the numerical solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 64(2), 551–566 (2010)

    Google Scholar 

  27. Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A modified zero dispersion and zero dissipation RKN method for the numerical solution of the radial Schrödinger equation. International Conference on Numerical Analysis and Applied Mathematics, SEP 18–22, 2009 Rethymno, Greece, Numerical Analysis and Applied Mathematics, Vols 1 And 2. AIP Conference Proceedings 1168, 1604–1607 (2009)

    Google Scholar 

  28. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  29. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  30. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  31. Monovasilis T., Kalogiratou Z., Simos T.E.: A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  32. Kalogiratou Z., Monovasilis T., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge-Kutta-Nyström methods. Comput. Phys. Commun. 180(2), 167–176 (2009)

    Article  CAS  Google Scholar 

  33. Kalogiratou Z., Monovasilis T., Simos T.E.: New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  34. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  35. Quinlan G.D., Tremaine S.: Astron. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

  36. http://burtleburtle.net/bob/math/multistep.html

  37. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  Google Scholar 

  38. Avdelas G., Konguetsof A., Simos T.E.: A family of hybrid eighth order methods with minimal phase-lag for the numerical solution of the Schrödinger equation and related problems. Int. J. Mod. Phys. C 11, 415–437 (2000)

    Google Scholar 

  39. G. Avdelas, T.E. Simos, Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation. Phys. Rev. E, pp. 1375–1381 (2000)

  40. Avdelas G., Simos T.E.: On variable-step methods for the numerical solution of Schrödinger equation and related problems. Comput. Chem. 25, 3–13 (2001)

    Article  CAS  Google Scholar 

  41. Simos T.E., Williams P.S.: New insights in the development of Numerov-type methods with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Chem 25, 77–82 (2001)

    Article  CAS  Google Scholar 

  42. Avdelas G., Konguetsof A., Simos T.E.: A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 136, 14–28 (2001)

    Article  CAS  Google Scholar 

  43. Simos T.E., Vigo-Aguiar Jesus: A symmetric high-order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 12, 1035–1042 (2001)

    Article  Google Scholar 

  44. Simos T.E., Vigo-Aguiar Jesus: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. C 12, 1453–1476 (2001)

    Article  Google Scholar 

  45. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  46. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  47. Tsitouras Ch., Simos T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput. 131, 201–211 (2002)

    Article  Google Scholar 

  48. Avdelas G., Konguetsof A., Simos T.E.: A generator of dissipative methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 148, 59–73 (2002)

    Article  CAS  Google Scholar 

  49. Konguetsof A., Simos T.E.: P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation. Comput. Chem. 26, 105–111 (2002)

    Article  CAS  Google Scholar 

  50. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  51. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  52. Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  53. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  54. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  55. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  56. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  57. Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  58. Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  59. Alolyan I., Simos T.E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrd̈inger equation. J. Math. Chem. 49(3), 711–764 (2011)

    Article  CAS  Google Scholar 

  60. Panopoulos G.A., Anastassi Z.A., Simos T.E.: A new symmetric eight-step predictor-corrector method for rhe numerical solution of the radial Schrödinger equation and related orbital problems. International Journal Of Modern Physics C 22(2), 133–153 (2011)

    Article  Google Scholar 

  61. Konguetsof A.: A New Two-Step Hybrid Method for the Numerical Solution of the Schrödinger Equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  62. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  63. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  64. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  65. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  66. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  67. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  68. Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  69. Simos T.E.: Closed Newton-Cotes Trigonometrically-Fitted Formulae for the Solution of the Schrödinger Equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  70. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  71. Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  72. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  73. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Rev. MexAA 42(2), 167–177 (2006)

    Google Scholar 

  74. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  75. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phy. 133(10), Article Number: 104108 (2010)

    Google Scholar 

  76. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  77. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  78. Kalogiratou Z., Monovasilis T., Simos T.E.: A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method. International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics. AIP Conference Proceedings 936, 313–317 (2007)

    Google Scholar 

  79. Monovasilis T., Kalogiratou Z., Simos T.E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  80. Monovasilis T., Simos T.E.: Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  81. Monovasilis T., Kalogiratou Z., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  82. Monovasilis T., Kalogiratou Z., Simos T.E.: Symplectic Partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  83. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  84. Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  85. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  86. Ixaru L.Gr., Rizea M.: A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  87. Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Article  Google Scholar 

  88. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  89. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  90. Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  91. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  92. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Google Scholar 

  93. Simos T.E.: Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrd̈inger Equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  94. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  95. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  96. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  97. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  98. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  99. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 733–752 (2008)

    CAS  Google Scholar 

  100. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 803–830 (2008)

    CAS  Google Scholar 

  101. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  102. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys C 18(3), 315–328 (2007)

    Article  Google Scholar 

  103. Simos T.E.: P-stability, trigonometric-fitting and the numerical solution of the radial Schrödinger equation. Comput. Phys. Commun. 180(7), 1072–1085 (2009)

    Article  CAS  Google Scholar 

  104. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  105. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  106. Sakas D.P., Simos T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 299–320 (2005)

    CAS  Google Scholar 

  107. Psihoyios G., Simos T.E.: A family of fifth algebraic order trigonometrically fitted P-C schemes for the numerical solution of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 53(2), 321–344 (2005)

    CAS  Google Scholar 

  108. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 50, 7–26 (2004)

    Google Scholar 

  109. Van de Vyver H.: Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711–732 (2008)

    CAS  Google Scholar 

  110. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  111. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  112. Stavroyiannis S., Simos T.E.: A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  113. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Reports 482, 1–240 (2009)

    Article  CAS  Google Scholar 

  114. Vujasin R., Sencanski M., Radic-Peric J., Peric M.: A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  115. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  116. Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  117. Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  118. Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 Preface. J. Math. Chem. 46(3), 727–728 (2009)

    Article  CAS  Google Scholar 

  119. Simos T.E., Psihoyios G., Anastassi Z.: Preface, proceedings of the international conference of computational methods in sciences and engineering 2005. Math. Comput. Model 51(3–4), 137–137 (2010)

    Article  Google Scholar 

  120. Simos T.E., Psihoyios G.: Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

    Article  Google Scholar 

  121. T.E. Simos, G. Psihoyios, Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)

    Google Scholar 

  122. T.E. Simos, J. Vigo-Aguiar, Special Issue–Selected Papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)

  123. T.E. Simos, Ch. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60(3) (2008)

  124. Simos T.E., Gutman I.: Papers presented on the international conference on computational methods in sciences and engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem 53(2), A3–A4 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Highly Cited Researcher, Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alolyan, I., Simos, T.E. A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J Math Chem 49, 1843–1888 (2011). https://doi.org/10.1007/s10910-011-9862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9862-z

Keywords

Navigation