Skip to main content
Log in

An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We improve upon a method introduced in Bertalmio et al. [4] for solving evolution PDEs on codimension-one surfaces in \(\mathbb{R}^N.\) As in the original method, by representing the surface as a level set of a smooth function, we use only finite differences on a Cartesian mesh to solve an Eulerian representation of the surface PDE in a neighborhood of the surface. We modify the original method by changing the Eulerian representation to include effects due to surface curvature. This modified PDE has the very useful property that any solution which is initially constant perpendicular to the surface remains so at later times. The change remedies many of problems facing the original method, including a need to frequently extend data off of the surface, uncertain boundary conditions, and terribly degenerate parabolic PDEs. We present numerical examples that include convergence tests in neighborhoods of the surface that shrink with the grid size

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., and Sethian J.A. (1995). A fast level set method for propagating interfaces. J. Comput. Phys. 118(2): 269–277

    Article  MathSciNet  MATH  Google Scholar 

  2. Adalsteinsson D., and Sethian J.A. (2003). Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185(1): 271–288

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen S.M., and Cahn J.W. (1979). A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsing. Acta. Metal. 27:1085–1095

    Article  Google Scholar 

  4. Bertalmío M., Cheng L.T., Osher S., and Sapiro G. (2001). Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2):759–780

    Article  MathSciNet  MATH  Google Scholar 

  5. Burger, M. (2005). Finite element approximation of elliptic partial differential equations on implicit surfaces. UCLA CAM Report 05-46, August 2005

  6. Cahn J.W., Mallet-Paret J., and Van Vleck E.S. (1998). Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59(2): 455–493

    Article  Google Scholar 

  7. Carpio A., and Bonilla L.L. (2003). Depinning transitions in discrete reaction-diffusion equations. SIAM J. Appl. Math. 63(3): 1056–1082

    Article  MathSciNet  MATH  Google Scholar 

  8. Caselles, V., Igual, L., and Sander, O. An axiomatic approach to scalar data interpolation on surfaces preprint.

  9. Chopp D.L. (2001). Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1): 230–244

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarenz U., Diewald U., and Rumpf M. (2004). Processing textured surfaces via anisotropic geometric diffusion. IEEE Trans. Image Process. 13(2): 248–261

    Article  PubMed  Google Scholar 

  11. Clarenz, U., Rumpf, M., and Telea, A. (2004). Finite elements on point based surfaces. Comput. Graphics, to appear.

  12. Diewald U., Preußer T., and Rumpf M. (2000). Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces. IEEE Trans. Visualization Comput. Graphics 6:139–149

    Article  Google Scholar 

  13. do Carmo M.P. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. Translated from the Portuguese

    MATH  Google Scholar 

  14. Dorsey J. and Hanrahan P. (2000). Digital materials and virtual weathering. Sci. Am. 282(2): 46

    Article  PubMed  Google Scholar 

  15. Evans L.C. (1998). Partial differential equations. In Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence, RI

  16. Evans L.C., Soner H.M., and Souganidis P.E. (1992). Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9): 1097–1123

    MathSciNet  MATH  Google Scholar 

  17. Evans L.C., and Spruck J. (1992). Motion of level sets by mean curvature II. Trans. Amer. Math. Soc. 330(1): 321–332

    Article  MathSciNet  MATH  Google Scholar 

  18. Frisken, S. F., Perry, R. N, Rockwood, A. and Jones, T. (2000). Adaptively sampled fields: A general representation of shape for computer graphics. ACM SIGGRAPH

  19. Glasner K. (2003). A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16(1): 49–66

    Article  MathSciNet  MATH  Google Scholar 

  20. Greer, J. B., Bertozzi, A. L., and Sapiro, G. (2005). Fourth order partial differential equations on general geometries. UCLA CAM Report 05-17, March 2005

  21. Halpern D., Jensen O.E., and Grotberg J.B. (1998). A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85:333–352

    PubMed  Google Scholar 

  22. Hofer, M., and Pottmann, H. (2004): Energy-minimizing splines in manifolds. ACM Trans. Graphics.

  23. Hoppe, H., and Eck, M. (1996). Automatic reconstruction of b-spline surfaces of arbitrary topological type. ACM SIGGRAPH

  24. Kincaid, D., Respess, J., and Young, D. Itpack 2c: A fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. http://rene.ma.utexas.edu/CNA/ITPACK/.

  25. Krishnamurthy, V., and Levoy, M. (1996). Fitting smooth surfaces to dense polygon meshes. ACM SIGGRAPH, 313–324

  26. Lax P., and Wendroff B. (1960). Systems of conservation laws. Commun. Pure Appl. Math. 13:217–237

    MathSciNet  MATH  Google Scholar 

  27. Mémoli F., and Sapiro G. (2001). Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(2): 730–764

    Article  MathSciNet  MATH  Google Scholar 

  28. Mémoli F., Sapiro G., and Thompson P. (2004). Implicit brain imaging. Human Brain Mapping 23:179–188

    Google Scholar 

  29. Myers T.G. and Charpin J.P.F. (2004). A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Trans. 47(25): 5483–5500

    Article  MATH  Google Scholar 

  30. Myers T.G., Charpin J.P.F., and Chapman S.J. (2002). The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys. Fluids 14(8): 2788–2803

    Article  MathSciNet  Google Scholar 

  31. Osher, S., and Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. In Applied Mathematical Sciences, Vol. 153 Springer-Verlag, New York

  32. Peng D., Merriman B., Osher S., Zhao H.-K., and Kang M. (1999). A PDE-based fast local level set method. J. Comput. Phys. 155(2): 410–438

    Article  MathSciNet  MATH  Google Scholar 

  33. Richtmyer R.D., and Morton K.W. (1994). Difference Methods for Initial-Value Problems 2nd ed. Robert E. Krieger Publishing Co. Inc., Malabar, FL

    MATH  Google Scholar 

  34. Sethian, J. A. (1999). Level set methods and fast marching method. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials sciences. In Cambridge Monographs on Applied and Computational Mathematics. Vol. 3, 2nd ed., Cambridge University Press, Cambridge

  35. Simon, L. (1983). Lectures on geometric measure theory. In Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 3. Australian National University Centre for Mathematical Analysis, Canberra.

  36. Strang G. (1968). On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5:506–517

    Article  MathSciNet  MATH  Google Scholar 

  37. Taylor, M. E. Partial differential equations. I. In Applied Mathematical Sciences, Vol. 115. Springer-Verlag, New York, Basic theory

  38. Toga A. (1998). Brain Warping. Academic Press, New York

    Google Scholar 

  39. Turk, G. (1991). Generating textures on arbitrary surfaces using reaction-diffusion. Comput. Graphics, 25(4).

  40. Vollmayr-Lee, B. P., and Rutenberg, A. D. (2003). Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E, 68.

  41. Witkin A., and Kass M. (1991). Reaction-diffusion textures. Computer Graphics (SIGGRAPH) 25(4): 299

    Article  Google Scholar 

  42. Xu, J., Li, Z., Lowengrub, J., and Zhao, H.-K. A level set method for interfacial flows with surfactant. preprint.

  43. Xu J., and Zhao H.-K. (2003). An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19(1–3): 573–594 Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MathSciNet  MATH  Google Scholar 

  44. Yngve, G., and Turk, G. (1999). Creating smooth implicit surfaces from polygonal meshes. Technical Report GIT-GVU-99-42, Graphics, Visualization, and Usability Center. Georgia Institute of Technology

  45. Zhao H.-K., Chan T., Merriman B. and Osher S. (1996). A variational level set approach to multiphase motion. J. Comput. Phys. 127(1): 179–195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Greer.

Additional information

Work supported by the National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greer, J.B. An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries. J Sci Comput 29, 321–352 (2006). https://doi.org/10.1007/s10915-005-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9012-5

Keywords

Navigation