Skip to main content
Log in

Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A preconditioning approach is developed that enables efficient polynomial chaos (PC) representations of uncertain dynamical systems. The approach is based on the definition of an appropriate multiscale stretching of the individual components of the dynamical system which, in particular, enables robust recovery of the unscaled transient dynamics. Efficient PC representations of the stochastic dynamics are then obtained through non-intrusive spectral projections of the stretched measures. Implementation of the present approach is illustrated through application to a chemical system with large uncertainties in the reaction rate constants. Computational experiments show that, despite the large stochastic variability of the stochastic solution, the resulting dynamics can be efficiently represented using sparse low-order PC expansions of the stochastic multiscale preconditioner and of stretched variables. The present experiences are finally used to motivate several strategies that promise to yield further advantages in spectral representations of stochastic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1972)

    MATH  Google Scholar 

  2. Atkinson, K.E.: An introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  3. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element: a non intrusive approach by regression. Eur. J. Comput. Mech. 15, 81–92 (2006)

    MATH  Google Scholar 

  5. Botev, Z.I.: Kernel density estimation using Matlab. Available at http://www.mathworks.us/matlabcentral/fileexchange/authors/27236

  6. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  Google Scholar 

  8. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Tempone, F., Nobile, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, 2nd edn. Dover, New York (2002)

    Google Scholar 

  13. Ghosh, D., Ghanem, R.: Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions. Int. J. Numer. Methods Eng. 73, 162–184 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  15. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Keese, A.: Numerical solution of systems with stochastic uncertainties: a general purpose framework for stochastic finite elements. Ph.D. thesis, Tech. Univ. Braunschweigh (2004)

  17. Keese, A., Matthies, H.G.: Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Technical report, Institute of Scientific Computing TU Braunschweig Brunswick (2003)

  18. Lam, S.H., Goussis, D.A.: Understanding complex chemical kinetics with computational singular perturbation. Symp., Int., Combust. 22(1), 931–941 (1989)

    Article  Google Scholar 

  19. Lam, S.H., Goussis, D.A.: A study of homogeneous methanol oxidation kinetic using CSP. Proc. Combust. Inst. 24, 113–120 (1992)

    Google Scholar 

  20. Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486 (1994)

    Article  Google Scholar 

  21. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Scientific Computation. Springer, Berlin (2010)

    Google Scholar 

  22. Le Maître, O.P., Knio, O.M., Najm, H.N., Ghanem, R.G.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Le Maître, O.P., Mathelin, L., Knio, O.M., Hussaini, M.Y.: Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete Contin. Dyn. Syst. 28(1), 199–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Le Maître, O.P., Najm, H.N., Ghanem, R.G., Knio, O.M.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Le Maître, O.P., Najm, H.N., Pebay, P.P., Ghanem, R.G., Knio, O.M.: Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations with random input data. Comput. Methods Appl. Mech. Eng. (2010, submitted)

  28. Mathelin, L., Hussaini, M.: A stochastic collocation algorithm for uncertainty analysis. Technical Report NASA/CR-2003-212153, NASA Langley Research Center (2003)

  29. Mathelin, L., Le Maître, O.P.: Uncertainty quantification in a chemical system using error estimated-based adaptation. Theor. Comput. Fluid Dyn. doi:10.1007/s00162-010-0210-x

  30. Babus̃ka, I.M., Deb, M.K., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190(48), 6359–6372 (2001)

    Article  MathSciNet  Google Scholar 

  31. Najm, H., Debusschere, B., Marzouk, Y., Widmer, S., Le Maître, O.: Uncertainty quantification in chemical systems. Int. J. Num. Eng. 80(6), 789–814 (2009)

    Article  MATH  Google Scholar 

  32. Naylor, A.W., Sell, G.R.: Linear Operator Theory in Engineering and Science. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  33. Petras, K.: On the Smolyak cubature error for analytic functions. Advances in Computational Mathematics 12, 71–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Petras, K.: Fast calculation of coefficients in the Smolyak algorithm. Numer. Algorithms 26, 93–109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Phenix, B.D., Dinaro, J.L., Tatang, M.A., Tester, J.W., Howard, J.B., McRae, G.J.: Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in supercritical water. Combust. Flame 112, 132–146 (1998)

    Article  Google Scholar 

  36. Reagan, M.T., Najm, H.N., Debusschere, B.J., Le Maître, O.P., Knio, O.M., Ghanem, R.G.: Spectral stochastic uncertainty quantification in chemical systems. Combust. Theory Model. 8, 607–632 (2004)

    Article  Google Scholar 

  37. Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)

    Article  Google Scholar 

  38. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  39. Valorani, M., Goussis, D.A., Creta, F., Najm, H.N.: Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method. J. Comput. Phys. 209, 754–786 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wan, X., Karniadakis, G.E.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wiener, S.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  43. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  44. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Xiu, D.B., Karniadakis, G.E.: The Wiener-Askey Polynomial Chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Knio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexanderian, A., Le Maître, O.P., Najm, H.N. et al. Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection. J Sci Comput 50, 306–340 (2012). https://doi.org/10.1007/s10915-011-9486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9486-2

Keywords

Navigation