Skip to main content
Log in

\(H^2\)-Stability of the First Order Fully Discrete Schemes for the Time-Dependent Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers the \(H^2\)-stability results for the first order fully discrete schemes based on the mixed finite element method for the time-dependent Navier–Stokes equations with the initial data \(u_0\in H^\alpha \) with \(\alpha =0,~1\) and 2. A mixed finite element method is used to the spatial discretization of the Navier–Stokes equations, and the temporal treatments of the spatial discrete Navier–Stokes equations are the first order implicit, semi-implicit, implicit/explicit(the semi-implicit/explicit in the case of \({\alpha }=0\)) and explicit schemes. The \(H^2\)-stability results of the schemes are provided, where the first order implicit and semi-implicit schemes are the \(H^2\)-unconditional stable, the first order explicit scheme is the \(H^2\)-conditional stable, and the implicit/explicit scheme (the semi-implicit/explicit scheme in the case of \({\alpha }=0\)) is the \(H^2\)-almost unconditional stable. Moreover, this paper makes some numerical investigations of the \(H^2\)-stability results for the first order fully discrete schemes for the time-dependent Navier–Stokes equations. Through a series of numerical experiments, it is verified that the numerical results are shown to support the developed \(H^2\)-stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Baker, G.A.: Galerkin Approximations for the Navier–Stokes Equations. Manuscript. Harvard University, Cambridge, MA (1976)

    Google Scholar 

  3. Baker, G.A., Dougalis, V.A., Karakashian, O.A.: On a high order accurate fully discrete Galerkin approximation to the Navier–Stokes equations. Math. Comput. 39, 339–375 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bercovier, M., Pironneau, O.: Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Fairweather, G., Ma, H., Sun, W.: Orthogonal spline collocation methods for the Navier–Stokes equations in stream function and vorticity formulation, submitted

  7. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Method for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  8. Girault, V., Raviart, P.A.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1987)

    Google Scholar 

  9. He, Y.N., Li, K.T.: Nonlinear Galerkin method and two-step method for the Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 12, 283–305 (1996)

    Article  MATH  Google Scholar 

  10. He, Y.N., Li, K.T.: Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations. Numer. Math. 79, 77–106 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y.N.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y.N., Miao, H.L., Mattheij, R.M., Chen, Z.X.: Numerical analysis of a modified finite element nonlinear Galerkin method. Numer. Math. 97, 725–756 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.N.: Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes problem. Math. Comput. 74, 1201–1216 (2005)

    Article  MATH  Google Scholar 

  14. He, Y.N.: Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with \(H^2\) or \(H^1\) initial data. Numer. Methods Partial Differ. Equ. 21, 875–904 (2005)

    Article  MATH  Google Scholar 

  15. He, Y.N., Liu, K.M.: A multi-level finite element method for the time-dependent Navier–Stokes equations. Numer. Meth. Partial Differ. Equ. 21, 1052–1068 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y.N., Sun, W.W.: Stability and convegence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y.N.: Stability and error analysis for a spectral Galerkin method for the Navier–Stokes equations with with \(L^2\) initial data. Numer. Methods Partial Differ. Equ. 24, 79–103 (2008)

    Article  MATH  Google Scholar 

  18. He, Y.N.: Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)

    Article  MATH  Google Scholar 

  19. He, Y.N.: Stability and convegence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations with non-smooth initial data. Numer. Methods Partial Differ. Equ. 28, 155–187 (2012)

    Article  MATH  Google Scholar 

  20. Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part I: regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part IV: error estimates for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, P.Z., Feng, X.L., Liu, D.M.: A stabilized finite element method for the time-dependent Stokes equations based on Crank–Nicolson scheme. Appl. Math. Model. 37, 1910–1919 (2013)

    Article  MathSciNet  Google Scholar 

  24. Johnston, H., Liu, J.G.: Accurate, stable and efficient Navier–Stokes slovers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marion, M., Temam, R.: Navier–Stokes equations: theory and approximation. In: Handbook of numerical analysis, vol. 6, pp. 503–688. North-Holland, Amsterdam (1998)

  28. Simo, J.C., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comput. Methods Appl. Mech. Eng. 111, 111–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1983)

    Google Scholar 

  31. Tone, F.: Error analysis for a second scheme for the Navier–Stokes equations. Appl. Numer. Math. 50, 93–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their helpful comments and suggestions which helped to improve the quality of our present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Additional information

The first author is partially support by the NSF of China (Grant Nos. 11271298, 11362021). The second author is partially support by the China Postdoctoral Science Foundation (Grant No. 2013M530438) and the NSF of Xinjiang Province (Grant No. 2013211B01). The third author is partially support by the Distinguished Young Scholars Fund of Xinjiang Province (Grant No. 2013711010) and the NSF of China (Grant No. 11271313).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Huang, P. & Feng, X. \(H^2\)-Stability of the First Order Fully Discrete Schemes for the Time-Dependent Navier–Stokes Equations. J Sci Comput 62, 230–264 (2015). https://doi.org/10.1007/s10915-014-9854-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9854-9

Keywords

Mathematics Subject classification

Navigation