Skip to main content
Log in

Exclusion Processes with Degenerate Rates: Convergence to Equilibrium and Tagged Particle

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Stochastic lattice gases with degenerate rates, namely conservative particle systems where the exchange rates vanish for some configurations, have been introduced as simplified models for glassy dynamics. We introduce two particular models and consider them in a finite volume of size ℓ in contact with particle reservoirs at the boundary. We prove that, as for non-degenerate rates, the inverse of the spectral gap and the logarithmic Sobolev constant grow as ℓ2. It is also shown how one can obtain, via a scaling limit from the logarithmic Sobolev inequality, the exponential decay of a Lyapunov functional for a degenerate parabolic differential equation (porous media equation). We analyze finally the tagged particle displacement for the stationary process in infinite volume. In dimension larger than two we prove that, in the diffusive scaling limit, it converges to a Brownian motion with non-degenerate diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Aldous and P. Diaconis, The asymmetric one-dimensional constrained Ising model: rigorous results, J.Statist.Phys. 107:945–975 (2002).

    Google Scholar 

  2. C. An´e, S. Blachère, D. Chafa¨, P. Fougàres, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les in´egalit´es de Sobolev logarithmiques. Panoramas et Synthèses, 10 (Soci´et´e Math´ematique de France, Paris, 2000).

  3. R. Arratia, The motion of a tagged particle in the simple symmetric exclusion system on Z., Ann.Probab. 11:362–373 (1983).

    Google Scholar 

  4. A. Barrat, J. Kurchan, V. Loreto and M. Sellitto, Edwards measure for powders and glasses, Phys.Rev.Lett. 85:5034–5038 (2000).

    Google Scholar 

  5. L. Bertini and B. Zegarlinski, Coercive inequalities for Kawasaki dynamics. The product case, Markov Processes Relat.Fields 5:125–162 (1999).

    Google Scholar 

  6. N. Cancrini and F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J.Math.Phys. 41:1391–1423 (2000).

    Google Scholar 

  7. N. Cancrini, F. Martinelli and C. Roberto, The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited, Ann.Inst.H.Poincar´e Probab.Statist. 38:385–436 (2002).

    Google Scholar 

  8. L. F. Cugliandolo, Dynamics of Glassy Systems. arXiv: cond-mat/0210312v2.

  9. P. Dai Pra and G. Posta, Logarithmic Sobolev Inequality for Zero-Range Dynamics. Preprint 2004. arXiv math.PR/0401248.

  10. P. G. De Benedetti, Metastable Liquids (Princeton University Press, Princeton, 1997).

    Google Scholar 

  11. J. D. Deuschel, Algebraic L2 decay of attractive critical processes on the lattice, Ann.Probab. 22:264–283 (1994).

    Google Scholar 

  12. S. Feng, I. Iscoe and T. Sepp¨al¨ainen, A microscopic mechanism for the porous medium equation, Stochastic Process.Appl. 66: 147–182 (1997).

    Google Scholar 

  13. W. Gotze in Liquids Freezing and the Glass Transition, Hansen, D. Levesque, J. Zinn-Justin Z., eds., (North-Holland, Amsterdam, 1991) pp. 287–503.

  14. H. M. Jaeger, J. B. Knight and R. P. Behringer, Granular solids, liquids, and gases, Rev.Mod.Phys. 68:1259–1273 (1996).

    Google Scholar 

  15. E. Janvresse, C. Landim, J. Quastel and H. T. Yau, Relaxation to equilibrium of conservative dynamics. I. Zero-range processes, Ann.Probab. 27:325–360 (1999).

    Google Scholar 

  16. C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm.Math.Phys. 104:1–19 (1986).

    Google Scholar 

  17. T. R. Kirkpatrick and D. Thirumalai, Dynamics of the structural glass transition and the ip-spin-interaction spin-glass model, Phys.Rev.Lett. 58:2091–2094 (1987).

    Google Scholar 

  18. T. R. Kirkpatrick, D. Thirumalai and P. G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys.Rev.A 40:1045–1054 (1989).

    Google Scholar 

  19. W. Kob and H. C. Andersen, Kinetic lattice-gas model of cage effects in high density liquids and a test of mode-coupling theory of the ideal glass transition, Phys.Rev.E 48:4364–4377 (1993).

    Google Scholar 

  20. J. Kurchan, L. Peliti and M. Sellitto, Aging in lattice-gas models with constrained dynamics, Europhys.Lett. 39:365–370 (1997).

    Google Scholar 

  21. A.J. Liu, S.R. Nagel, eds., Jamming and rheology: constrained dynamics on microscopic and macroscopic scales(Taylor and Francis, London, 2001).

    Google Scholar 

  22. S. L. Lu and H. T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm.Math.Phys. 156:399–433 (1993).

    Google Scholar 

  23. M. Mezard, Statistical physics of the glass phase, Physica A 306:25–38 (2002).

    Google Scholar 

  24. J. Quastel, Diffusion of color in the simple exclusion process, Comm.Pure Appl.Math. 45:623–679 (1992).

    Google Scholar 

  25. F. Ritort and P. Sollich, Glassy dynamics of kinetically constrained models, Adv.Phys. 52: 219 (2003).

    Google Scholar 

  26. M. Sellitto and J. J. Arenzon, Free-volume kinetic models of granular matter, Phys.Rev.E 62:7793–7796 (2000).

    Google Scholar 

  27. H. Spohn, Tracer diffusion in lattice gases, J.Statist.Phys. 59:1227–1239 (1990).

    Google Scholar 

  28. H. Spohn, Large Scale Dynamics of Interacting Particles Springer, Berlin, (1991).

  29. L. C. E. Struick, Physical aging in amorphous polymers and other materials (Elsevier, Houston, 1976).

  30. C. Toninelli, G. Biroli and D. S. Fisher, Spatial structures and dynamics of kinetically constrained models of glasses Phys.Rev.Lett. 18: 185504 (2004).

    Google Scholar 

  31. C. Toninelli, G. Biroli, Dynamical arrest, tracer diffusion and kinetically constrained lattice gases, to be published in J.Stat.Phys.

  32. H.-T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm.Math.Phys. 181:367–408 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Toninelli, C. Exclusion Processes with Degenerate Rates: Convergence to Equilibrium and Tagged Particle. Journal of Statistical Physics 117, 549–580 (2004). https://doi.org/10.1007/s10955-004-3453-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-3453-3

Navigation