Skip to main content
Log in

Phase Transitions in Dynamical Random Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a large-time limit of a Markov process whose states are finite graphs. The number of the vertices is described by a supercritical branching process, and the dynamics of edges is determined by the rates of appending and deleting. We find a phase transition in our model similar to the one in the random graph model G n,p . We derive a formula for the line of critical parameters which separates two different phases: one is where the size of the largest component is proportional to the size of the entire graph, and another one, where the size of the largest component is at most logarithmic with respect to the size of the entire graph. In the supercritical phase we find the asymptotics for the size of the largest component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. B. Athreya and P. E. Ney, Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. (Springer-Verlag, New York-Heidelberg, 1972).

    Google Scholar 

  2. A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications 272:173–187 (1999).

    Article  ADS  Google Scholar 

  3. A. D. Barbour and G. Reinert, Small worlds. Random Structures Algorithms 19:54–74 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bollobás, Random graphs. (Academic Press, 1985).

  5. B. Bollobás, S. Janson and O. Riordan, The phase transition in the uniformly grown random graph has infinite order, To appear in Random Structures and Algorithms.

  6. B. Bollobás, O. Riordan, J. Spencer and G. Tusnády, The degree sequence of a scale-free random graph process. Random Structures Algorithms 18:279–290 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random? Phys. Review E 64:041902 (2001).

    Article  ADS  Google Scholar 

  8. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks: From biological nets to the Internet and WWW. (Oxford University Press, Oxford, 2003).

    MATH  Google Scholar 

  9. R. Durret, Rigorous result for the CHKNS random graph model. Discrete random walks (Paris, 2003), 95–104 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003.

  10. P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5:17–61 (1960).

    MATH  Google Scholar 

  11. S. Janson, T. Łuczak and A. Ruciński, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization. (Wiley-Interscience, New York, 2000).

    Google Scholar 

  12. R. M. Karp, The transitive closure of a random digraph. Random Structures Algorithms 1(1):73–93 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. A. Malyshev, Random graphs and grammars on graphs. Discrete Math. Appl. 8(3):247–262 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. A. Malyshev, Random infinite spin graph evolution. On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, pp. 157–167, 198, Amer. Math. Soc., Providence, RI, 2000.

    MathSciNet  Google Scholar 

  15. B. Söderberg, Properties of random graphs with hidden color. Physical Review E 68:026107 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Söderberg, Random graphs with hidden color. Physical Review E 68:015102(R) (2003).

    ADS  Google Scholar 

  17. B. Söderberg, A general formalism for inhomogeneous random graphs. Physical Review E 66:066121 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. S. Turova, Long paths and cycles in the dynamical graphs. Journal of Statistical Physics 110(1/2):385–417 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. S. Turova, Dynamical random graphs with memory. Phys. Review E 70:059902 (2004) 1–9. (Also: Erratum: Dynamical random graphs with memory. Phys. Rev. E 65:066102 (2002).

    MathSciNet  Google Scholar 

  20. T. S. Turova, Note on the random graphs in the subcritical case. Dynamical systems from number theory to probability–2, A. Yu. Khrennikov (ed.) (Växjö University Press, 2003), 187–192.

  21. T. S. Turova, Study of Synaptic Plasticity via Random Graphs. BioSystems 67:281–286 (2002).

    Article  Google Scholar 

  22. D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world” networks. Nature 393:440–442 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana S. Turova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turova, T.S. Phase Transitions in Dynamical Random Graphs. J Stat Phys 123, 1007–1032 (2006). https://doi.org/10.1007/s10955-006-9101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9101-3

Keywords

Navigation