Skip to main content
Log in

Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329–4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. B. Simon. Functional Integration and Quantum Physics. Academic Press, New York (1979).

    MATH  Google Scholar 

  2. M. Demuth and J.A. van Casteren. Stochastic Spectral Theory for Selfadjoint Operators. Birkhauser-Verlag, Basel (2000).

    MATH  Google Scholar 

  3. M. Rosenblatt. Remarks on Burgers equation. J. Math. Phys. 24:1129–1136 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Rosenblatt. Scale renormalization and random solutions of Burgers equation. J. Appl. Prob. 24:328–338 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  5. Ya. G. Sinai. Two results concerning asymptotic behavior of the Burgers equation with force, J. Stat. Phys. 64:1–12 (1992).

  6. S. Albeverio, S. A. Molchanov and D. Surgailis. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Prob. Theor. Rel. Fields 100:457–484 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. V. Bulinski and S. A. Molchanov. Asymptotic Gaussianess of solutions of the Burgers equation with random initial conditions. Theory Probab. Appl. 36:217–235 (1991).

    Google Scholar 

  8. I. Deriev and N. Leonenko. Limit Gaussian behavior of the solutions of the multidimensional Burgers’ equation with weak-dependent initial conditions. Acta Applicandae Math. 47:1–18 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Leonenko and E. Orsingher. Limit theorems for solutions of Burgers equation with Gaussian and non-Gaussian initial data. Theory Prob. Appl. 40:387–403 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. N. Leonenko, E. Orsingher and K. V. Rybasov. Limit distributions of solutions of multidimensional Burgers equation with random initial data, I and II. Ukrain. Math. J. 46:870–877 (1994) and 1003–1010. Random Ope. Stoch. Equ. 4:229–238.

    Google Scholar 

  11. N. N. Leonenko and W. A. Woyczynski. Exact parabolic asymptotics for singular nD Burgers random fields: Gaussian approximation. Stoch. Proc. Appl. 76:141–165 (1998a).

  12. N. N. Leonenko and W. A. Woyczynski. Scaling limits of solutions of the heat equation for singular non-Gaussian data, J. Stat. Phys., 91:423–438 (1998b).

  13. M. D. Ruiz-Medina, J. M. Angulo and V. V. Anh. Scaling limit solution of a fractional Burgers equation, Stoch. Proc. Appl. 93:285–300 (2001).

    Google Scholar 

  14. D. Surgailis and W. A. Woyczynski. Limit theorem for the Burgers equation initiated by data with long-range dependence, in Doukhan, P., Oppenheim, G. and Taqqu, M. S. (eds), Theory and Applications of Long-Range Dependence, pp. 507–523. Birkhäuser, Boston (2003).

  15. V. V. Anh and N. N. Leonenko. Non-Gaussian scenarios for the heat equation with singular initial conditions. Stoch. Proc. Appl. 84:91–114 (1999).

    Google Scholar 

  16. V. V. Anh and N. N. Leonenko. Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104:1349–1387 (2001).

    Google Scholar 

  17. V. V. Anh and N. N. Leonenko. Renormalization and homogenization of fractional diffusion equations with random data. Prob. Theor. Rel. Fields 124:381–408 (2002).

    Google Scholar 

  18. V. V. Anh, N. N. Leonenko and L. M. Sakhno. Spectral properties of Burgers and KPZ turbulence. J. Stat. Physics, in press (2006).

  19. V. H. Hoang and K. Khanin. Random Burgers equation and Lagrangian systems in noncompact domains. Nonlinearity 16:819–842 (2003).

    Google Scholar 

  20. H. Holden, T. Lindstrom, B. Oksendal, J. Uboe and T. S. Zhang. The Burgers equation with noisy force and the stochastic heat equation. Comm. Partial Diff. Eq. 19:119–141 (1994).

    Google Scholar 

  21. S. A. Molchanov, D. Surgailis and W. A. Woyczynski. The large-scale structure of the Universe and quasi-Voronoi tessellation of shock fronts in forced Burgers turbulence in R d. Ann. Appl. Prob. 7:220–223 (1997).

    Google Scholar 

  22. A. I. Saichev and W. A. Woyczynski. Evolution of Burgers turbulence in presence of external forces. J. Fluid Mech. 331:313–343 (1997).

    Google Scholar 

  23. W. A. Woyczynski. Burgers-KPZ Turbulence. Göttingen Lectures. Lecture Notes in Mathematics 1706. Springer-Verlag, Berlin (1998).

  24. N. Leonenko. Limit Theorems for Random Fields with Singular Spectrum. Kluwer, Dordrecht (1999).

  25. O. E. Barndorff-Nielsen and N. N. Leonenko. Burgers turbulence problem with linear or quadratic external potential, J. Appl. Prob. 42:550–565 (2005).

    Google Scholar 

  26. L. Bertini and N. Cancrini. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Physics. 78:1377–1401 (1995).

    Google Scholar 

  27. V. V. Anh, J. M. Angulo and M. D. Ruiz-Medina. Possible Long-Range Dependence in Fractional Random Fields. J. Stat. Plan. Inf. 80:95–110 (1999).

    Google Scholar 

  28. X. Wang, C. H. Oh and L. C. Kwek. General approach to functional forms for the exponential quadratic operators in coordinate-momentum space. J. Phys. A.: Math. Gen. 31:4329–4336 (1998).

    Google Scholar 

  29. E. M. Stein. Singular Integrals and Differential Properties of Functions. Princeton Univerisity Press (1970).

  30. A. G. Ramm. Random Fields Estimation Theory, Logman Scientific & Technical (1990).

  31. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Co (1978).

  32. M. D. Ruiz-Medina, J. M. Angulo and V. V. Anh. Fractional generalized random fields on bounded domains. Stoch. Anal. Appl. 21:465–492 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

AMS Subject Classifications: 60G60, 60G15, 62M15, 60H15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonenko, N.N., Ruiz-Medina, M.D. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential. J Stat Phys 124, 191–205 (2006). https://doi.org/10.1007/s10955-006-9136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9136-5

Keywords

Navigation