Skip to main content
Log in

Reconstruction on Trees and Spin Glass Transition

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider an information source generating a symbol at the root of a tree network whose links correspond to noisy communication channels, and broadcasting it through the network. We study the problem of reconstructing the transmitted symbol from the information received at the leaves. In the large system limit, reconstruction is possible when the channel noise is smaller than a threshold.

We show that this threshold coincides with the dynamical (replica symmetry breaking) glass transition for an associated statistical physics problem. Motivated by this correspondence, we derive a variational principle which implies new rigorous bounds on the reconstruction threshold. Finally, we apply a standard numerical procedure used in statistical physics, to predict the reconstruction thresholds in various channels. In particular, we prove a bound on the reconstruction problem for the antiferromagnetic “Potts” channels, which implies, in the noiseless limit, new results on random proper colorings of infinite regular trees.

This relation to the reconstruction problem also offers interesting perspective for putting on a clean mathematical basis the theory of glasses on random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. MacDonald, J. Gibbs and A. Pipkin, Biopolymers 6:1 (1968); C. MacDonald and J. Gibbs, Biopolymers 7:707 (1969).

  • B. Derrida, E. Domany and D. Mukamel, J. Stat. Phys. 69:667 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, J. Phys. A: Math. Gen. 26:1493 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • G. M. Schütz and E. Domany, J. Stat. Phys. 72:277 (1993).

    Article  Google Scholar 

  • B. Derrida, Phys. Rep. 301:65 (1998).

    Article  MathSciNet  Google Scholar 

  • G. M. Schütz, in Phase Transition and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic Press, San Diego, 2000).

  • J. Solomovici, T. Lesnik and C. Reiss, J. Theor. Biol. 185:511 (1997).

    Article  Google Scholar 

  • C. M. Stenström, H. Jin, L. L. Major, W. P. Tate and L. A. Isaksson, Gene 263:273 (2001).

    Article  Google Scholar 

  • T. Chou and G. Lakatos, Phys. Rev. Lett. 93:198101 (2004).

    Article  ADS  Google Scholar 

  • M. Robinson, R. Lilley, S. Little, J. S. Emtage, G. Yarranton, P. Stephens, A. Millican, M. Eaton and G. Humphreys, Nucl. Acids Res. 12:6663 (1984).

    Google Scholar 

  • M. A. Sorensen, C. G. Kurland and S. Pedersen, J. Mol. Biol. 207:365 (1989).

    Article  Google Scholar 

  • B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, in Molecular Biology of the Cell, 4th ed. (Garland Science, New York, NY, 2002)

  • F. Neidhardt and H. Umbarger, in Escherichia coli and Salmonella, 2nd ed., edited by F. C. Neidhardt (ASM Press, Washington, DC, 1996).

  • R. Heinrich and T. Rapoport, J. Theor. Biol. 86:279 (1980).

    Article  Google Scholar 

  • C. Kang and C. Cantor, J. Mol. Struct. 181:241 (1985).

    Google Scholar 

  • L. B. Shaw, R. K. P. Zia and K. H. Lee, Phys. Rev. E 68:021910 (2003).

    Article  ADS  Google Scholar 

  • J. J. Dong, B. Schmittmann and R. K. P. Zia, to be published.

  • A. Kolomeisky, J. Phys. A: Math. Gen. 31:1153 (1998).

    Article  MATH  ADS  Google Scholar 

  • S. Janowsky and J. Lebowitz, Phys. Rev. A 45:618 (1992).

    Article  ADS  Google Scholar 

  • S. Janowsky and J. Lebowitz, J. Stat. Phys. 77:35 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  • R. J. Harris and R. B. Stinchcombe, Phys. Rev. E 70:016108 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  • M. Ha, J. Timonen and M. den Nijs, Phys. Rev. E 68:056122 (2003). For more details, see also M. Ha, PhD thesis, University of Washington, 2003.

    Google Scholar 

  • L. B. Shaw, A. B. Kolomeisky, and K. H. Lee, J. Phys. A: Math. Gen. 37:2105 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS: 02.50.−r (Probability theory, stochastic processes, and statistics), 64.70.Pf (Glass transitions), 89.75.Hc (Networks and genealogical trees)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mézard, M., Montanari, A. Reconstruction on Trees and Spin Glass Transition. J Stat Phys 124, 1317–1350 (2006). https://doi.org/10.1007/s10955-006-9162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9162-3

Key Words

Navigation