Skip to main content
Log in

Some Rigorous Results on a Stochastic GOY Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A stochastic infinite dimensional version of the GOY model is rigorously investigated. Well posedness of strong solutions, existence and p-integrability of invariant measures is proved. Existence of solutions to the zero viscosity equation is also proved. With these preliminary results, the asymptotic exponents ζp of the structure function are investigated. Necessary and sufficient conditions for ζ2≥ 2/3 and ζ2=2/3 are given and discussed on the basis of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan and R. Temam, Équations stochastiques du type Navier—Stokes. J. Funct. Anal. 13:195–222 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A 17:3521–3531 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  3. L. Biferale, Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech. 35:441–468 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. L. Chow and R. Z. Khasminski, Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl. 15(5):671–699 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Constantin, B. Levant, and E. S. Titi, Analytic study of shell models of turbulence, preprint arXiv:physics/0511075v1 (2005).

  6. G. Da Prato and J. Zabdczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (1992).

    Book  MATH  Google Scholar 

  7. T. Dombre and J. L. Gilson, Intermittency, chaos and singular fluctuations in the mixed Obukhov—Novikov shell model of turbulence. Physica D 111:265–287 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. E. Weinan and J. C. Mattingly, Ergodicity for the Navier—Stokes equation with degenerate random forcing: Finite-dimensional approximation. Comm. Pure Appl. Math. 54(11):1386–1402 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Flandoli, An Introduction to 3D Stochastic Fluid Dynamics, CIME Lecture Notes (2005).

  10. F. Flandoli, Dissipativity and invariant measures for stochastic Navier—Stokes equations. NoDEA Nonlinear Diff. Equations Appl. 1(4):403–423 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier—Stokes equations. Probab. Theor. Relat. Fields 102(3):367–391 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Flandoli, M. Gubinelli, M. Hairer, and M. Romito, Remarks on the K41 scaling law in turbulent fluid, preprint (2005).

  13. U. Frisch, Turbulence, Cambridge University Press: Cambridge (1995).

    MATH  Google Scholar 

  14. G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002. Translated from the Italian.

    Google Scholar 

  15. M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier—Stokes equations with degenerate forcing term, to appear on Annals of Mathematics.

  16. L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Scaling and dissipation in the GOY shell model. Phys. Fluids 7(3):617–629 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, reprinted in Proc. Roy. Soc. London, Ser. A 434:9–13 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. S. B. Kuksin, The Eulerian limit for 2D statistical hydrodynamics. J. Statist. Phys. 115(1–2):469–492 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. S. B. Kuksin and O. Penrose, A family of balance relations for the two-dimensional Navier—Stokes equations with random forcing. J. Stat. Phys. 118(3–4):437–449 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. A. Kupiainen, Statistical theories of turbulence, In Advances in Mathematical Sciences and Applications (Gakkotosho, Tokyo, 2003).

    Google Scholar 

  21. J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Dunod: Paris (1969).

    MATH  Google Scholar 

  22. J. L. Lions and E. Magenes, Problémes aux Limites non Homogénes et Applications, Dunod: Paris (1968).

    MATH  Google Scholar 

  23. M. Hairer and J. C. Mattingly, Ergodic properties of highly degenerate 2D stochastic Navier—Stokes equations. C. R. Acad. Sci. Paris, Ser. I 339(12):879–882 (2004).

    MATH  MathSciNet  Google Scholar 

  24. J. C. Mattingly and E. Pardoux, Malliavin calculus for the stochastic 2D Navier—Stokes equation. Commun. on Pure and Appl. Math., to appear.

  25. C. Odasso, Méthodes de couplage pour des équations stochastiques de type Navier—Stokes et Schrödinger, PhD thesis, Rennes (2005).

  26. M. Romito, Ergodicity of the finite dimensional approximations of the 3D Navier—Stokes equations forced by a degenerate noise. J. Statist. Phys. 114(1–2):155–177 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbato, D., Barsanti, M., Bessaih, H. et al. Some Rigorous Results on a Stochastic GOY Model. J Stat Phys 125, 677–716 (2006). https://doi.org/10.1007/s10955-006-9203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9203-y

Keywords

Navigation