Skip to main content
Log in

From Random Matrices to Stochastic Operators

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose that classical random matrix models are properly viewed as finite difference schemes for stochastic differential operators. Three particular stochastic operators commonly arise, each associated with a familiar class of local eigenvalue behavior. The stochastic Airy operator displays soft edge behavior, associated with the Airy kernel. The stochastic Bessel operator displays hard edge behavior, associated with the Bessel kernel. The article concludes with suggestions for a stochastic sine operator, which would display bulk behavior, associated with the sine kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dumitriu and A. Edelman, Matrix models for beta ensembles. J. Math. Phys. 43(11):5830–5847 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. I. Dumitriu and A. Edelman, Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics. Ann. Inst. H. Poincaré Probab. Statist. 41(6):1083–1099 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Edelman, SIAM Conference on Applied Linear Algebra (The College of William and Mary, Williamsburg, VA, July 2003).

    Google Scholar 

  4. A. Edelman and B. D. Sutton, The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found. Comput. Math.

  5. P. J. Forrester, The spectrum edge of random matrix ensembles. Nuclear Phys. B 402(3):709–728 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. P. J. Forrester, Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the laguerre orthogonal and symplectic ensembles. http://arxiv.org/abs/nlin.SI/0005064 (2000).

  7. M. Jimbo, T. Miwa, Y. Môri, and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1(1):80–158 (1980).

    Google Scholar 

  8. K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys. 209(2):437–476 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29(2):295–327 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Killip and I. Nenciu, Matrix models for circular ensembles. Int. Math. Res. Not. (50):2665–2701 (2004).

  11. A. B. J. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations from the modified Jacobi unitary ensemble. Int. Math. Res. Not. (30):1575–1600 (2002).

    Google Scholar 

  12. M. L. Mehta, Random Matrices, 2nd ed. (Academic Press Inc., Boston, MA, 1991).

  13. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 5th ed., (Springer-Verlag, Berlin, 2000).

  14. J. A. Ramírez, B. Rider, and Bálint Virág, Beta ensembles, stochastic airy spectrum, and a diffusion. Preprint.

  15. J. W. Silverstein, The smallest eigenvalue of a large-dimensional Wishart matrix. Ann. Probab. 13(4):1364–1368 (1985).

    MATH  MathSciNet  Google Scholar 

  16. B. D. Sutton, The Stochastic Operator Approach to Random Matrix Theory, PhD thesis (Massachusetts Institute of Technology, Cambridge, MA 02139, June 2005).

  17. G. Szegö, Orthogonal Polynomials, vol. XXIII, 4th ed. (American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications).

  18. C. A. Tracy and H. Widom, Introduction to random matrices. In Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), volume 424 of Lecture Notes in Phys., pp. 103–130. (Springer, Berlin 1993).

  19. C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel. Phys. Lett. B 305:115–118 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159(1):151–174 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161(2):289–309 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177(3):727–754 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. C. A. Tracy and H. Widom, The distribution of the largest eigenvalue in the Gaussian ensembles: β = 1, 2, 4. In Calogero-Moser-Sutherland Models (Montréal, QC, 1997), CRM Ser. Math. Phys., pp. 461–472. (Springer, New York, 2000).

  24. H. F. Trotter, Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegö. Adv. Math. 54(1):67–82 (1984).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Sutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, A., Sutton, B.D. From Random Matrices to Stochastic Operators. J Stat Phys 127, 1121–1165 (2007). https://doi.org/10.1007/s10955-006-9226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9226-4

Keywords

Navigation