Skip to main content
Log in

Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

As Bleher (J. Stat. Phys. 66(1):315–373, 1992) observed the free flight vector of the planar, infinite horizon, periodic Lorentz process {S n n=0,1,2,…} belongs to the non-standard domain of attraction of the Gaussian law—actually with the \(\sqrt{n\log n}\) scaling. Our first aim is to establish his conjecture that, indeed, \(\frac{S_{n}}{\sqrt{n\log n}}\) converges in distribution to the Gaussian law (a Global Limit Theorem). Here the recent method of Bálint and Gouëzel (Commun. Math. Phys. 263:461–512, 2006), helped us to essentially simplify the ideas of our earlier sketchy proof (Szász, D., Varjú, T. in Modern dynamical systems and applications, pp. 433–445, 2004). Moreover, we can also derive (a) the local version of the Global Limit Theorem, (b) the recurrence of the planar, infinite horizon, periodic Lorentz process, and finally (c) the ergodicity of its infinite invariant measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, J., Denker, M.: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. In: Balakrishnan, N., Ibragimov, I.A., Nevzorov, V.B. (eds.) Asymptotic Methods in Probability and Statistics with Applications. Papers form the International Conference, St. Petersburg, Russia, 1998, pp. 215–224. Birkhäuser, Basel (2001)

    Google Scholar 

  2. Bálint, P., Gouëzel, S.: Limit theorems in the stadium billiard. Commun. Math. Phys. 263, 461–512 (2006)

    Article  MATH  Google Scholar 

  3. Bleher, P.M.: Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. Stat. Phys. 66(1), 315–373 (1992)

    Article  MATH  Google Scholar 

  4. Bouchaud, J.-P., Le Doussal, P.: Numerical study of the D-dimensional periodic Lorentz gas with universal properties. J. Stat. Phys. 41, 225–248 (1985)

    Article  Google Scholar 

  5. Bunimovich, L.A.: Decay of correlations in dynamical systems with chaotic behavior. Zh. Eksp. Teor. Fiz. 89, 1452–1471 (1985) [Sov. Phys. JETP 62, 842–852 (1985)]

    Google Scholar 

  6. Bunimovich, L.A., Chernov, N.I., Sinai, Ya.G.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46, 47–10 (1991)

    Article  Google Scholar 

  7. Bunimovich, L.A., Sinai, Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981)

    Article  MATH  ADS  Google Scholar 

  8. Chernov, N.I.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)

    Article  MATH  Google Scholar 

  9. Chernov, N.I.: Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122, 1061–1094 (2006)

    Article  MATH  Google Scholar 

  10. Chernov, N.I., Markarian, R.: Chaotic Billiards. AMS Math. Surveys, vol. 127 (2006)

  11. Chernov, N.I., Sinai, Ya.G.: Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Usp. Mat. Nauk 42(3), 153–174, 256 (1987) (in Russian)

    Google Scholar 

  12. Conze, J.-P.: Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergod. Theory Dyn. Syst. 19(5), 1233–1245 (1999)

    Article  MATH  Google Scholar 

  13. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  14. Friedman, B., Martin, R.F. Jr.: Decay of the velocity autocorrelation function for the periodic Lorentz gas. Phys. Lett. A 105, 23–26 (1984)

    Article  ADS  Google Scholar 

  15. Ibragimov, I.A., Linnik, Yu.V.: Independent and Stationary Sequences of Random Variables. Nauka, Moscow (1971)

    MATH  Google Scholar 

  16. Krámli, A., Szász, D.: The problem of recurrence for Lorentz processes. Commun. Math. Phys. 98, 539–552 (1985)

    Article  MATH  ADS  Google Scholar 

  17. Lenci, M.: Aperiodic Lorentz gas: recurrence and ergodicity. Ergod. Theory Dyn. Syst. 23, 869–883 (2003)

    Article  MATH  Google Scholar 

  18. Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2, 378–406 (1957)

    Article  Google Scholar 

  19. Pène, F.: Applications des propriétés stochastiques du billiard dispersif. C. R. Acad. Sci. Paris Sér. I Math. 330, 1103–1106 (2000)

    MATH  Google Scholar 

  20. Schmidt, K.: On joint recurrence. C. R. Acad. Sci. Paris Sér. 1 Math. 327(9), 837–842 (1998)

    MATH  Google Scholar 

  21. Simányi, N.: Toward a proof of recurrence for the Lorentz process. Banach Center Publ. 23, 265–276 (1989)

    Google Scholar 

  22. Spitzer, F.: Principles of Random Walks. Chap. 6, p. 26. Proposition 3. Van Nostrand, Princeton (1964)

    Google Scholar 

  23. Szász, D., Varjú, T.: Local limit theorem for the Lorentz process and its recurrence in the plane. Ergod. Theory Dyn. Syst. 24, 257–278 (2004)

    Article  MATH  Google Scholar 

  24. Szász, D., Varjú, T.: Markov Towers and Stochastic Properties of Billiards. Modern dynamical systems and applications 433–445. Cambridge University Press, Cambridge (2004)

  25. Young, L.-S.: “Statistical properties of systems with some hyperbolicity including certain billiards. Ann. Math. 147, 585–650 (1998)

    Article  MATH  Google Scholar 

  26. Zacherl, A., Geisel, T., Nierwetberg, J., Radons, G.: Power spectra for anomalous diffusion in the extended billiard. Phys. Lett. A 114, 317–321 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domokos Szász.

Additional information

Dedicated to Ya.G. Sinai on the occasion of his seventieth birthday.

Research supported by the Hungarian National Foundation for Scientific Research grants No. T046187, NK 63066 and TS 049835, further by Hungarian Science and Technology Foundation grant No. A-9/03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szász, D., Varjú, T. Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon. J Stat Phys 129, 59–80 (2007). https://doi.org/10.1007/s10955-007-9367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9367-0

Keywords

Navigation