Skip to main content
Log in

Quasi-Stationary Regime of a Branching Random Walk in Presence of an Absorbing Wall

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A branching random walk in presence of an absorbing wall moving at a constant velocity v undergoes a phase transition as the velocity v of the wall varies. Below the critical velocity v c , the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time T. We study the quasi-stationary regime for v<v c when T is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time T. We then use this construction to show that the properties of the quasi-stationary regime are universal when vv c . We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antal, T., Blagoev, K.B., Trugman, S.A., Redner, S.: Aging and immortality in a cell proliferation model. J. Theor. Biol. 248, 411–417 (2007)

    Article  Google Scholar 

  2. Assaf, M., Meerson, B.: Spectral theory of metastability and extinction in birth-death systems. Phys. Rev. Lett. 97, 200602 (2006)

    Article  ADS  Google Scholar 

  3. Berestycki, H., Hamel, F., Nadirashvili, N.: Propagation speed for reaction-diffusion equations in general domains. C. R. Acad. Sci. Paris 339, 163–168 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I—Species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bramson, M.: Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Am. Math. Soc. 44, 1–190 (1983)

    MathSciNet  Google Scholar 

  6. Brunet, É., Derrida, B.: Exactly soluble noisy traveling-wave equation appearing in the problem of directed polymers in a random medium. Phys. Rev. E 70, 016106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brunet, É., Derrida, B., Mueller, A., Munier, S.: Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76, 1–7 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Brunet, É., Derrida, B., Mueller, A., Munier, S.: Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Phys. Rev. E 73, 056126 (2006)

    Article  ADS  Google Scholar 

  9. Brunet, É., Derrida, B., Mueller, A., Munier, S.: Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104 (2007). cond-mat:0704.3389

    Article  ADS  MathSciNet  Google Scholar 

  10. Cattiaux, P., Collet, P., Lambert, A., Martinez, S., Méléard, S., San Martin, J.: Quasi-stationary distributions and diffusion models in population dynamics. http://arxiv.org/abs/math/0703781 (2007)

  11. de Oliveira, M.M., Dickman, R.: How to simulate the quasistationary state. Phys. Rev. E 71, 016129 (2005)

    Article  ADS  Google Scholar 

  12. Derrida, B., Simon, D.: The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78, 60006 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dickman, R., Vidigal, R.: Quasi-stationary distributions for stochastic processes with an absorbing state. J. Phys. A Math. Gen. 35, 1147–1166 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Doering, C.R., Mueller, C., Smereka, P.: Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality. Phys. A 325, 243–259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Domany, E., Kinzel, W.: Directed percolation in two dimensions: numerical analysis and an exact solution. Phys. Rev. Lett. 47, 5–8 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dubertret, B., Liu, S., Ouyang, Q., Libchaber, A.: Dynamics of DNA-protein interaction deduced from in vitro DNA evolution. Phys. Rev. Lett. 86, 6022–6025 (2001)

    Article  ADS  Google Scholar 

  17. Escudero, C.: Field theory of propagating reaction-diffusion fronts. Phys. Rev. E 70, 041102 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ferrari, P.A., Martinez, S., San Martín, J.: Phase transition for absorbed Brownian motion with drift. J. Stat. Phys. 86, 213–231 (1997)

    Article  MATH  ADS  Google Scholar 

  19. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355 (1937)

    Google Scholar 

  20. Hallatschek, O., Nelson, D.: Gene surfing in expanding populations. Theor. Popul. Biol. 73, 158 (2008). arXiv:q-bio/0703040

    Article  Google Scholar 

  21. Hardy, R., Harris, S.: A new formulation of the spine approach to branching diffusions. Mathematics Preprint, University of Bath, no. 0404 (2004)

  22. Harris, J., Harris, S.: Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12, 81–92 (2007)

    MATH  Google Scholar 

  23. Harris, T.: The Theory of Branching Processes. Springer, Berlin (1962)

    Google Scholar 

  24. Hinrichsen, H.: Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  25. Iancu, E., Mueller, A., Munier, S.: Universal behavior of QCD amplitudes at high energy from general tools of statistical physics. Phys. Lett. B 606, 342–350 (2005)

    Article  ADS  Google Scholar 

  26. Kang, K., Redner, S.: Fluctuation-dominated kinetics in diffusion-controlled reactions. Phys. Rev. A 32, 435–447 (1985)

    Article  ADS  Google Scholar 

  27. Kesten, H., Ney, P., Spitzer, F.: The Galton-Watson process with mean one and finite variance. Theory Probab. Appl. 11, 513–540 (1966)

    Article  MathSciNet  Google Scholar 

  28. Khalili-Françon, E.: Processus de Galton-Watson. Lect. Notes Math. 321, 122–135 (1973)

    Article  Google Scholar 

  29. Kloster, M.: Analysis of evolution through competitive selection. Phys. Rev. Lett. 95, 168701 (2005)

    Article  ADS  Google Scholar 

  30. Marquet, C., Peschanski, R., Soyez, G.: Traveling waves and geometric scaling at nonzero momentum transfer. Nucl. Phys. A 756, 399–418 (2005)

    Article  ADS  Google Scholar 

  31. McKean, H.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moro, E.: Hybrid method for simulating front propagation in reaction-diffusion systems. Phys. Rev. E 69, 060101(R) (2004)

    Article  ADS  Google Scholar 

  33. Mueller, C., Mytnik, L., Quastel, J.: The asymptotic speed of a random traveling wave. Preprint (2008)

  34. Mueller, C., Sowers, R.: Random traveling waves for the KPP equation with noise. J. Funct. Anal. 128, 439–498 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Munier, S., Peschanski, R.: Geometric scaling as traveling waves. Phys. Rev. Lett. 91, 232001 (2003)

    Article  ADS  Google Scholar 

  36. Odor, G.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Panja, D.: Effects of fluctuations on propagating fronts. Phys. Rep. 393, 87–174 (2004)

    Article  Google Scholar 

  38. Pechenik, L., Levine, H.: Interfacial velocity corrections due to multiplicative noise. Phys. Rev. E 59, 3893–3900 (1999)

    Article  ADS  Google Scholar 

  39. Peliti, L.: In: Lectures at the Summer College on Frustrated Systems (1997). cond-mat/9712027

  40. Slack, R.S.: A branching process with mean one and possibly infinite variance. Probab. Theory Relat. Fields 9, 139–145 (1968)

    MATH  MathSciNet  Google Scholar 

  41. Snyder, R.: How demographic stochasticity can slow biological invasions. Ecology 84, 1333–1339 (2003)

    Article  Google Scholar 

  42. Steinsaltz, D., Evans, S.: Quasistationary distributions for one-dimensional diffusions with killing. Am. Math. Soc. 359, 1285–1324 (2005)

    Article  MathSciNet  Google Scholar 

  43. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  MATH  ADS  Google Scholar 

  44. Wegner, F.: In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 6. Academic Press, San Diego (1976)

    Google Scholar 

  45. Yaglom, M.: Certain limit theorems of the theory of branching random processes. Rep. Acad. Sci. USSR 56, 795–798 (1947)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D., Derrida, B. Quasi-Stationary Regime of a Branching Random Walk in Presence of an Absorbing Wall. J Stat Phys 131, 203–233 (2008). https://doi.org/10.1007/s10955-008-9504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9504-4

Keywords

Navigation