Skip to main content
Log in

On the Uniqueness for the Spatially Homogeneous Boltzmann Equation with a Strong Angular Singularity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules.

Our proof relies on the ideas of Tanaka (Z. Wahrscheinlichkeitstheor. Verwandte. Geb. 46(1):67–105, [1978]) we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bhatt, A., Karandikar, R.: Invariant measures and evolution equations for Markov processes characterized via martingale problems. Ann. Probab. 21(4), 2246–2268 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cercignani, C.: The Boltzmann Equation and its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    MATH  Google Scholar 

  4. Desvillettes, L.: Boltzmann’s Kernel and the Spatially Homogeneous Boltzmann Equation. Riv. Mat. dell’Univ. Parma 6(4), 1–22 (2001) (special issue)

    Google Scholar 

  5. Desvillettes, L., Graham, C., Méléard, S.: Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stoch. Process. Appl. 84(1), 115–135 (1999)

    Article  MATH  Google Scholar 

  6. Desvillettes, L., Mouhot, C.: Regularity, stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. arXiv eprint math.AP/0606307 (2006)

  7. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  8. Fontbona, J., Guérin, H., Méléard, S.: Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Preprint (2007)

  9. Fournier, N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125(4), 927–946 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fournier, N., Méléard, S.: A stochastic particle numerical method for 3D Boltzmann equations without cutoff. Math. Comput. 71(238), 583–604 (2002)

    MATH  ADS  Google Scholar 

  11. Fournier, N., Méléard, S.: A weak criterion of absolute continuity for jump processes: application to the Boltzmann equation. Bernoulli 8(4), 537–558 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Preprint (2007)

  13. Horowitz, J., Karandikar, R.L.: Martingale problems associated with the Boltzmann equation. In: Seminar on Stochastic Processes, San Diego, CA, 1989. Progr. Probab., vol. 18, pp. 75–122. Birkhäuser, Boston (1990)

    Google Scholar 

  14. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  15. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (1987)

    MATH  Google Scholar 

  16. Lu, X., Mouhot, C.: About measures solutions of the spatially homogeneous Boltzmann equation. Work in progress

  17. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheor. Verwandte. Geb. 46(1), 67–105 (1978)

    Article  MATH  Google Scholar 

  19. Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In: Proceedings of the International Symposium on Stochastic Differential Equations. Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, pp. 409–425. Wiley, New York (1978)

    Google Scholar 

  20. Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  23. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Guérin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, N., Guérin, H. On the Uniqueness for the Spatially Homogeneous Boltzmann Equation with a Strong Angular Singularity. J Stat Phys 131, 749–781 (2008). https://doi.org/10.1007/s10955-008-9511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9511-5

Keywords

Navigation