Skip to main content
Log in

Rare Events in Stochastic Partial Differential Equations on Large Spatial Domains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A methodology is proposed for studying rare events in stochastic partial differential equations in systems that are so large that standard large deviation theory does not apply. The idea is to deduce the behavior of the original model by breaking the system into appropriately scaled subsystems that are sufficiently small for large deviation theory to apply but sufficiently large to be asymptotically independent from one another. The methodology is illustrated in the context of a simple one-dimensional stochastic partial differential equation. The application reveals a connection between the dynamics of the partial differential equation and the classical Johnson–Mehl–Avrami–Kolmogorov nucleation and growth model. It also illustrates that rare events are much more likely and predictable in large systems than in small ones due to the extra entropy provided by space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soc. 36, 413–432 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ariel, G., Vanden-Eijnden, E.: Testing transition state theory on Kac-Zwanzig model. J. Stat. Phys. 126, 43–73 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Arrhenius, S.A.: Über die Reaktiongeschwindkeit bei der inversion von Rohrzucker durch Säueren. Z. Phys. Chemie 4 (1899)

  4. Avrami, M.: Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103–1122 (1939)

    Article  ADS  Google Scholar 

  5. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boldrighini, C., De Masi, A., Pellegrinotti, A., Presutti, E.: Collective phenomena in interacting particle systems. Stoch. Process. Appl. 25, 137–152 (1987)

    Article  MATH  Google Scholar 

  7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brassesco, S., Buttà, P.: Interface fluctuations for the D=1 stochastic Ginzburg–Landau equation with nonsymmetric reaction term. J. Stat. Phys. 93, 1111–1142 (1998)

    Article  MATH  ADS  Google Scholar 

  9. Brassesco, S., De Masi, A., Presutti, E.: Brownian fluctuations of the interface in the D=1 Ginzburg–Landau equation with noise. Ann. Inst. Henri Poincaré 31, 81–118 (1995)

    MATH  Google Scholar 

  10. Braun, H.B.: Statistical mechanics of nonuniform magnetization reversal. Phys. Rev. B 50, 16501–16521 (1994)

    Article  ADS  Google Scholar 

  11. Cahn, J.W.: The time cone method for nucleation and growth kinetics on a finite domain. Mat. Res. Soc. Symp. Proc. 398, 425–437 (1996)

    Google Scholar 

  12. Cassandro, M., Olivieri, E., Picco, P.: Small random perturbations of infinite dimensional dynamical systems and nucleation theory. Ann. Inst. Henri Poincaré 44, 343–396 (1986)

    MATH  MathSciNet  Google Scholar 

  13. Chiu, S.N., Quine, M.P.: Central limit theory for the number of seeds in a growth model in ℝd with inhomogeneous Poisson arrivals. Ann. Appl. Probab. 7, 802–814 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Note Series, vol. 293. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  16. Dehghanpour, P., Schonmann, R.H.: Metropolis dynamics relaxation via nucleation and growth. Commun. Math. Phys. 188, 89–119 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. De Masi, A., Ferrari, P.A., Lebowitz, J.L.: Rigorous derivation of reaction–diffusion equations with fluctuations. Phys. Rev. Lett. 55, 1947–1949 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  18. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials: III. Spinodal decomposition. Nonlinearity 9, 53–114 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. De Masi, A., Pellegrinotti, A., Presutti, E., Vares, M.E.: Spatial patterns when phases separate in an interacting particle system. Ann. Probab. 22, 334–371 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics, vol. 1501. Springer, Berlin (1991)

    MATH  Google Scholar 

  21. E, W., Vanden-Eijnden, E.: Towards a theory of transition paths. J. Stat. Phys. 123, 503–523 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Faris, W.G., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A: Math. Gen. 15, 3025–3055 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  24. Funaki, T.: The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields 102, 221–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Giacomin, G.: Phase separation and random domain patterns in a stochastic particle model. Stoch. Process. Appl. 51, 25–62 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, New York (1941)

    Google Scholar 

  27. Gunton, J.D., Droz, M.: Introduction to the Theory of Metastable and Unstable States. Lecture Notes in Physics, vol. 183. Springer, Berlin (1983)

    Google Scholar 

  28. Halperin, P.C., Hohenberg, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  29. Holst, L., Quine, M.P., Robinson, J.: A general stochastic model for nucleation and growth. Ann. Appl. Probab. 6, 903–921 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Johnson, W.A., Mehl, P.A.: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–442 (1939)

    Google Scholar 

  31. Kolmogorov, A.N.: On the statistical theory of metal crystallization. Bull. Acad. Sci. USSR, Phys. Ser. 1, 355–360 (1937)

    Google Scholar 

  32. Kramers, H.A.: Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica 7, 284–304 (1940)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Landauer, R., Swanson, J.A.: Frequency factors in the thermally activated process. Phys. Rev. 121, 1668–1674 (1961)

    Article  ADS  Google Scholar 

  34. Langer, J.S.: Theory of the condensation point. Ann. Phys. 41, 108–157 (1967)

    Article  ADS  Google Scholar 

  35. Langer, J.S.: Statistical theory of the decay of metastable states. Ann. Phys. 54, 258–275 (1969)

    Article  ADS  Google Scholar 

  36. Ludwig, D.: Persistence of dynamical systems under random perturbations. SIAM Rev. 17, 605–640 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  37. Magnus, W., Winkler, S.: Hill’s Equation. Interscience, New York (1966)

    MATH  Google Scholar 

  38. Martinelli, F., Olivieri, E., Scoppola, E.: Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times. J. Stat. Phys. 55, 477–504 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Matkowsky, B.J., Schuss, Z.: The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33, 365–382 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  40. Oki, K., Sagane, H., Eguchi, T.: Separation and domain structure of α+B 2 phase in Fe–Al alloys. J. Phys. C 7, 414 (1977)

    Google Scholar 

  41. Penrose, M.D.: Limit theorems for monotonic particle systems and sequential deposition. Stoch. Process. Appl. 98, 175–197 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. arXiv:cond-mat/9912264 (2000)

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, iv. Analysis of Operators. Academic Press, New York (1972)

    Google Scholar 

  44. Reznikoff, M.G.: Rare events in finite and infinite dimensions. Ph.D. thesis, New York University (2004)

  45. Reznikoff, M.G., Vanden-Eijnden, E.: Invariant Measures of Stochastic partial differential equations and conditioned diffusions. C.R. Acad. Sci. Paris, Ser. I 340, 305–308 (2005)

    MATH  MathSciNet  Google Scholar 

  46. Rikvold, P.A., Tomita, H., Miyashita, S., Sides, S.W.: Metastable lifetimes in a kinetic Ising model: Dependence on field and system size. Phys. Rev. E 49, 5080–5090 (1994)

    Article  ADS  Google Scholar 

  47. Schonmann, R.H.: Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region. Commun. Math. Phys. 161, 1–49 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Schonmann, R.H., Shlosman, S.B.: Wulff droplets and the metastable relaxation of kinetic Ising models. Commun. Math. Phys. 194, 389–462 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Schuss, Z.: Singular perturbation methods in stochastic differential equations of mathematical physics. SIAM Rev. 22, 119–155 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tomita, H., Miyashita, S.: Statistical properties of the relaxation processes of metastable states in the kinetic Ising model. Phys. Rev. B 46, 8886–8893 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Westdickenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanden-Eijnden, E., Westdickenberg, M.G. Rare Events in Stochastic Partial Differential Equations on Large Spatial Domains. J Stat Phys 131, 1023–1038 (2008). https://doi.org/10.1007/s10955-008-9537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9537-8

Keywords

Navigation