Skip to main content
Log in

A Simple Mean Field Model for Social Interactions: Dynamics, Fluctuations, Criticality

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of a spin-flip model with a mean field interaction. The system is non reversible, spacially inhomogeneous, and it is designed to model social interactions. We obtain the limiting behavior of the empirical averages in the limit of infinitely many interacting individuals, and show that phase transition occurs. Then, after having obtained the dynamics of normal fluctuations around this limit, we analyze long time fluctuations for critical values of the parameters. We show that random inhomogeneities produce critical fluctuations at a shorter time scale compared to the homogeneous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaro de Matos, J.M.G., Fernando Perez, J.: Fluctuations in the Curie-Weiss version of the random field Ising model. J. Statist. Phys. 62, 587–608 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Barucci, E., Tolotti, M.: The dynamics of social interaction with agents’ heterogeneity. Working Paper Series n. 109, Dept. of Applied Mathematics, pp. 1–33. University of Venice (2009)

  3. Blume, L.E.: How noise matters. Games Econ. Behav. 44, 251–271 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blume, L.E., Durlauf, S.N.: Equilibrium concepts for social interaction models. Int. Game Theory Rev. 5, 193–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brock, W.A., Durlauf, S.N.: Discrete choice with social interactions. Rev. Econom. Stud. 68, 235–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. (2010, in preparation)

  7. Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Commun. Math. Phys. 118, 531–567 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cont, R., Löwe, M.: Social distance, heterogeneity and social interactions. Centre des Mathematiques Appliquees, Ecole Polytechnique, p. 505 (2003)

  9. Dai Pra, P., den Hollander F.: McKean-Vlasov limit for interacting random processes in random media. Technical report, Department of Mathematics, University of Nijmegen (1995)

  10. Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M.: Large portfolio losses; A dynamic contagion model. Ann. Appl. Probab. 19, 347–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai Pra, P., Tolotti, M.: Heterogeneous credit portfolios and the dynamics of the aggregate losses. Stoch. Process. Appl. 119, 2913–2944 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983)

    Article  ADS  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1993)

    MATH  Google Scholar 

  14. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  15. Frey, R., Backhaus, J.: Pricing and hedging of portfolio credit derivatives with interacting default intensities. Int. J. Theor. Appl. Finance 11, 611–634 (2008)

    Article  MathSciNet  Google Scholar 

  16. Giesecke, K., Weber, S.: Cyclical correlations, credit contagion and portfolio losses. J. Bank. Financ. 28, 3009–3036 (2004)

    Article  Google Scholar 

  17. Giesecke, K., Weber, S.: Credit contagion and aggregate losses. J. Econ. Dyn. Control 30, 741–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. M3AS 20(4), 1–22 (2010). doi:10.1142/S0218202510004349

    Google Scholar 

  19. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Mantegna, R.N., Eugene Stanley, H.: Introduction to Econophysics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  22. Sartori, E.: Some aspects of spin systems with mean-field interaction. PhD thesis, Department of Pure and Applied Mathematics, University of Padova (2007)

  23. Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996)

    Google Scholar 

  24. Sood, V., Redner, S.: Voter models on heterogeneous graphs. Phys. Rev. Lett. 94(4), 178701 (2005)

    Article  ADS  Google Scholar 

  25. Stauffer, D., Moss de Oliveira, S., De Oliveira, P.M.C., Sá Martins, J.S.: Biology, Sociology, Geology by Computational Physicists. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  26. Suchecki, K., Eguíluz, V.M., San Miguel, M.: Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution. Phys. Rev. E 72(8), 036132 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sartori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, F., Dai Pra, P. & Sartori, E. A Simple Mean Field Model for Social Interactions: Dynamics, Fluctuations, Criticality. J Stat Phys 139, 820–858 (2010). https://doi.org/10.1007/s10955-010-9964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9964-1

Keywords

Navigation