Skip to main content
Log in

Local Semicircle Law in the Bulk for Gaussian β-Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use the tridiagonal matrix representation to derive a local semicircle law for Gaussian beta ensembles at the optimal level of n −1+δ for any δ>0. Using a resolvent expansion, we first derive a semicircle law at the intermediate level of n −1/2+δ; then an induction argument allows us to reach the optimal level. This result was obtained in a different setting, using different methods, by Bourgade, Erdös, and Yau in arXiv:1104.2272 [math.PR] and Bao and Su in arXiv:1104.3431 [math.PR]. Our approach is new and could be extended to other tridiagonal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Applied Mathematics Series, vol. 55, 10th edn. Natl. Bur. of Standards, Washington (1972)

    MATH  Google Scholar 

  2. Bao, Z., Su, Z.: Local semicircle law and Gaussian fluctuation for Hermite β-ensemble. Preprint arXiv:1104.3431 [math.PR] (2011)

  3. Bourgarde, P., Erdös, L., Yau, H.-T.: Universality of general β-ensemble. Preprint arXiv:1104.2272 [math.PR] (2011)

  4. Bourgarde, P., Erdös, L., Yau, H.-T.: Bulk universality of general β ensembles with non-convex potential. Preprint arXiv:1201.2283 [math.PR] (2012)

  5. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes, vol. 3. Am. Math. Soc., Providence (1998)

    Google Scholar 

  6. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumitriu, I.: Eigenvalue statistics for beta ensembles, PhD thesis. MIT (2003)

  8. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Edelman, A., Sutton, B.: From random matrices to stochastic operators. J. Stat. Phys. 127(6), 1121–1165 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Erdös, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2008)

    Article  Google Scholar 

  11. Erdös, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287, 641–655 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Szegö, G.: In: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23 (2003). Corrected reprint of 1939 edition

    Google Scholar 

  13. Tao, T.: Topics in Random Matrices. Graduate Studies in Mathematics, vol. 132. Am. Math. Soc., Providence (2012)

    Google Scholar 

  14. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Trotter, H.: Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdoch and Szego. Adv. Math. 54(1), 67–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their respective advisors, M. Aizenman and Ya.G. Sinai, for their interest in this work. We would also like to thank Prof. Sarnak for pointing out important references regarding asymptotics of classical orthogonal polynomials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percy Wong.

Appendix

Appendix

Here we prove a slight modification of McDiarmid’s inequality used in our inductive argument.

Proposition A.7

A modification of McDiarmid’s inequality

Let X 1,…,X n be independent subgaussian random variables and suppose F is a function of n variables such that there exists an event Ω with overwhelming probability that if \(x_{1},\ldots ,x_{n},\tilde{x_{i}} \in\varOmega\), then

$$ \bigl|F(x_1,\ldots,x_n) - F(x_1, \ldots,x_{i-1},\tilde{x_i},x_{i+1}, \ldots,x_n)\bigr| \leq c_i $$

for all 1≤in, and outside of Ω, F is bounded by a polynomial of n. Then for any λ>0, one has

$$ \mathbb{P}\bigl(\bigl|F(X)-\mathbb{E}\bigl(F(X)\bigr)\bigr| \geq\lambda\sigma \bigr) \leq C \exp\bigl(-c\lambda^2\bigr) $$

for some absolute constant C,c>0, and \(\sigma= \sum_{i=1}^{n}c_{i}^{2}\).

Proof

By symmetry, it suffices to show

$$ \mathbb{P}\bigl(F(X)-\mathbb{E}F(X) \geq\lambda\sigma\bigr) \leq C\exp \bigl(c\lambda^2\bigr). $$

Let t>0 be a parameter to be chosen later. Consider the exponential moment

$$ \mathbb{E}\bigl(\exp\bigl(tF(X)\bigr)\bigm|X_1,\ldots,X_{n-1},\ \{X_i\}\in\varOmega\bigr). $$

Writing \(Y = F(X) - \mathbb{E}(F(X)\mid X_{1},\ldots,X_{n-1},\ \{X_{i}\}\in \varOmega)\), we can rewrite the above as:

$$ \mathbb{E}\bigl(\exp\bigl(tF(Y)\bigr)\bigm|X_1,\ldots,X_{n-1},\ {X_i}\in\varOmega\bigr) \exp\bigl(t\mathbb{E}\bigl(F(X) \bigr)\bigm|X_1,\ldots,X_{n-1},\ \{X_i\}\in\varOmega\bigr). $$

By the condition of the theorem, tY fluctuates only by at most tc n and has mean 0. By Hoeffding’s lemma, we have

$$ \mathbb{E}\bigl(\exp\bigl(tF(Y)\bigr)\bigm|X_1,\ldots,X_{n-1},\ \{X_i\}\in\varOmega\bigr) \leq\exp\bigl(O\bigl(t^2c_n^2\bigr)\bigr). $$

Integrating out the conditioning, we have the bound

$$ \mathbb{E}\bigl(\exp\bigl(tF(X)\bigr) \leq\exp\bigl(O\bigl(t^2c_n^2 \bigr)\bigr)\bigr)\mathbb{E}\bigl(t\bigl(\mathbb{E}F(X)\bigm|X_1, \ldots,X_{n-1},\ \{X_i\}\in\varOmega\bigr)\bigr). $$

Now the latter expectation is a function of the first (n−1) variables and obeys the same hypothesis, so we can iterate and obtain the bound:

$$ \exp\Biggl(\,\sum_{i=1}^nO \bigl(t^2c_i^2\bigr)\Biggr) \mathbb{E} \bigl(t\bigl(\mathbb{E}F(X)\bigm|\{X_i\}\in\varOmega\bigr)\bigr) $$

and by the overwhelming probability condition and the bound outside of the set Ω, we have

$$ \mathbb{P}\bigl(F(X) - \mathbb{E}F(X) \geq\lambda\sigma\bigr) \leq \exp\bigl(O\bigl(t^2\sigma^2\bigr)-t\lambda\sigma\bigr). $$

Optimizing in t gives the desired result. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosoe, P., Wong, P. Local Semicircle Law in the Bulk for Gaussian β-Ensemble. J Stat Phys 148, 204–232 (2012). https://doi.org/10.1007/s10955-012-0536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0536-4

Keywords

Navigation