Skip to main content
Log in

Stationary Measures for Projective Transformations: The Blackwell and Furstenberg Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the Blackwell and Furstenberg measures, which play an important role in information theory and the study of Lyapunov exponents. For the Blackwell measure we determine parameter domains of singularity and give upper bounds for the Hausdorff dimension. For the Furstenberg measure, we establish absolute continuity for some parameter values. Our method is to analyze linear fractional iterated function schemes which are contracting on average, have no separation properties (that is, we do not assume that the open set condition holds, see Hutchinson in Indiana Univ. Math. J. 30:713–747, 1981) and, in the case of the Blackwell measure, have place dependent probabilities. In such a general setting, even an effective upper bound on the dimension of the measure is difficult to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blackwell, D.: The entropy of functions of finite-state Markov chains. In: Trans. First Prague Conf. Information Theory, Statistical Decision Functions, Random Processes, pp. 13–20 (1957)

    Google Scholar 

  2. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin (1975)

    MATH  Google Scholar 

  3. Cover, T., Thomas, J.: Elements if Information Theory. Wiley, New York (1991). 2nd edn. (2006)

    Book  Google Scholar 

  4. Cvitanovic, P.: Chaos—classical and quantum. http://chaosbook.org/index.html

  5. Falconer, K.J.: Techniques in Fractal Geometry. Wiley, New York (1997)

    MATH  Google Scholar 

  6. Furstenberg, H.: Non-commuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, G., Marcus, B.: Analyticity of entropy rate of hidden Markov chains. IEEE Trans. Inf. Theory 52(12), 5251–5266 (2006)

    Article  MathSciNet  Google Scholar 

  8. Han, G., Marcus, B.: Derivatives of entropy rate in special families of hidden Markov chains. IEEE Trans. Inf. Theory 53, 2642–2652 (2007)

    Article  MathSciNet  Google Scholar 

  9. http://reference.wolfram.com/mathematica/tutorial/ConstrainedOptimizationGlobalNumerical.html

  10. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jaroszewska, J., Rams, M.: On the hausdorff dimension of invariant measures of weakly contracting on average measurable IFS. J. Stat. Phys. 132(5), 907–919 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Kaimanovich, V., Le Prince, V.: Matrix random products with singular harmonic measure. Geom. Dedic. 150, 257–279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marklof, J., Tourigny, Y., Wolowski, L.: Explicit invariant measures for products of random matrices. Trans. Am. Math. Soc. 360, 3391–3427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mauldin, R.D., Urbański, M.: Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  15. Ngai, Sz.M., Wang, Y.: Self-similar measures associated with ifs with non-uniform contraction ratios. Asian J. Math. 9, 227–244 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Ordentlich, E., Weissman, T.: On the optimality of symbol by symbol filtering and denoising. IEEE Trans. Inf. Theory 52, 19–40 (2006)

    Article  MathSciNet  Google Scholar 

  17. Peres, Y.: Domain of analytic continuation for the top Lyapunov exponent. Ann. Inst. Henri Poincaré Probab. Stat. 28(1), 131–148 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Berlin (1981)

    MATH  Google Scholar 

  19. Simon, K., Solomyak, B., Urbanski, M.: Hausdorff dimension of limit sets for parabolic IFS with overlaps. Pac. J. Math. 201(2), 441–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon, K., Solomyak, B., Urbanski, M.: Invariant measures for parabolic IFS with overlaps and random continued fractions. Trans. Am. Math. Soc. 353(12), 5145–5164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of Bárány was supported by the EU FP6 Research Training Network CODY. Both Bárány and Simon were supported by grant OTKA # K71693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollicott.

Appendix

Appendix

Here we briefly summarize the results of the papers [19] and [20] used in this note. We are given the family \(\varPhi^{\mathbf{t}}= \{\phi_{1}^{\mathbf {t}},\dots,\phi_{m}^{\mathbf{t}} \}_{\mathbf{t}\in U}\) of hyperbolic IFS on a compact interval X⊂ℝ. (Hyperbolic means that there exist 0<c 1<c 2<1 such that for the \(\mathcal{C}^{2}\) maps \(\phi_{k}^{\mathbf{t}}\) we have \(c_{1}<|(\phi_{k}^{\mathbf{t}})'(x)|<c_{2}\) for all k,t,x.) We assume that the parameter domain U⊂ℝd is a bounded open set with smooth boundary. As usual we denote the natural projection from Σ:={1,…,m} to X by

$$\pi_\mathbf{t}(\mathbf{i}):= \lim _{n\to\infty} \phi_{i_1}^{\mathbf{t}}\circ\cdots\circ \phi_{i_n}^{\mathbf{t}}(x), $$

where xX is arbitrary. In this section we assume that we are given a σ-invariant ergodic measure μ on Σ and we always write

$$\nu_\mathbf{t}:=\pi_\mathbf{t}\mu $$

for its push down measure. The next theorem shows how the dimension and absolute continuity of the measure ν t depends on the ratio of the entropy h(μ) of μ and the Lyapunov exponent λ t of the measure ν t defined as

$$\lambda_\mathbf{t}:=\int\phi^\mathbf{t}_{i_1}\bigl( \pi_\mathbf {t}(\sigma \mathbf{i})\bigr) \,d\mu(\mathbf{i}). $$

Below we often use the notation

$$\varSigma_2:= \bigl\{(\mathbf{i},\mathbf{j})\in\varSigma\times \varSigma:\ i_0\ne j_0 \bigr\}, \qquad f_{\mathbf{i},\mathbf{j}}(\mathbf{t}):= \pi_\mathbf{t}(\mathbf{i})- \pi_\mathbf{t}(\mathbf{j}). $$

We recall for the reader how the following theorem is proved in [19] and [20]:

Theorem 29

(Simon, Solomyak and Urbanski)

We assume that

(H):
$$\forall(\mathbf{i},\mathbf{j})\in\varSigma_2, \ \forall\mathbf{t}\in \overline{U}\colon \quad \bigl\|\nabla f_{\mathbf{i},\mathbf{j}} (\mathbf{t})\bigr\|>0.$$

Then

  1. (1)

    For Leb d almost all tU, \(\dim_{\mathrm{H}}\nu_{\mathbf{t}}=\min \{\frac{h(\mu)}{-\lambda_{\mathbf{t}}},1 \}\);

  2. (2)

    ν t Leb for Leb d almost all t∈{tU:−h(μ)/λ t >1}.

We start with a lemma from [19]. For a set F⊂ℝd let N r (F) be the minimal number of balls needed to cover the set F.

Lemma 30

(See [19, Lemma 7.3].)

Let U⊂ℝd be as above. Suppose that f is a \(\mathcal {C}^{1}\) real-valued function defined in a neighborhood of the closure of U such that for some i∈{1,…,d} there exists an η>0 satisfying

$$ \mathbf{t}\in U, \quad \bigl \vert f(\mathbf{t})\bigr \vert \leq\eta \quad \Longrightarrow \quad \frac{\partial f(\mathbf{t})}{\partial t_i}\geq\eta. $$
(30)

Then there exists C=C(η) such that

$$ N_r \bigl( \bigl\{ \mathbf{t}\in U:\ \bigl \vert f( \mathbf{t})\bigr \vert \leq r \bigr\} \bigr)\leq c\cdot r^{1-d}, \quad \forall r>0. $$
(31)

For every (i,j)∈Σ 2 we may apply this lemma for f=f i,j (t) since (H) implies that (30) holds. Write η i,j and C i,j for the corresponding constants. For compactness \(\underline{\eta}:=\min_{(\mathbf{i},\mathbf{j})\in\varSigma_{2}} \eta_{\mathbf{i},\mathbf{j}}>0\) and \(\overline{C}:=\max_{(\mathbf{i},\mathbf{j})\in\varSigma_{2}} C_{(\mathbf{i},\mathbf{j})}<\infty\). So,

$$\forall(\mathbf{i},\mathbf{j})\in\varSigma_2\colon\quad N_r \bigl( \bigl\{\mathbf{t}\in U: |f_{\mathbf{i},\mathbf{j}}|\leq r \bigr\} \bigr) \leq\overline{C} \cdot r^{1-d}. $$

The last statement is called the strong transversality condition (cf. [19, p. 454]) which clearly implies that the transversality condition holds: There exists a \(\widetilde{c}>0\) such that

$$ \forall r>0\colon \quad \mathit{Leb}_d \bigl\{\mathbf{t}\in U: \vert f_{\mathbf{i},\mathbf{j}}\vert \leq r \bigr\}\leq\widetilde{c}\cdot r. $$
(32)

Then we can apply [20, Theorem 7.2] which immediately yields the assertion of our theorem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bárány, B., Pollicott, M. & Simon, K. Stationary Measures for Projective Transformations: The Blackwell and Furstenberg Measures. J Stat Phys 148, 393–421 (2012). https://doi.org/10.1007/s10955-012-0541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0541-7

Keywords

Navigation