Skip to main content
Log in

Rates of Convergence in the Blume–Emery–Griffiths Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive rates of convergence for limit theorems that reveal the intricate structure of the phase transitions in a mean-field version of the Blume–Emery–Griffith model. The theorems consist of scaling limits for the total spin. The model depends on the inverse temperature \(\beta \) and the interaction strength \(K\). The rates of convergence results are obtained as \((\beta ,K)\) converges along appropriate sequences \((\beta _n,K_n)\) to points belonging to various subsets of the phase diagram which include a curve of second-order points and a tricritical point. We apply Stein’s method for normal and non-normal approximation avoiding the use of transforms and supplying bounds, such as those of Berry–Esseen quality, on approximation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blume, M.: Theory of the first-order magnetic phase change in UO\(_2\). Phys. Rev. 141, 517–524 (1966)

    Article  ADS  Google Scholar 

  2. Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the \(\lambda \) transition and phase separation in \({H}e^3-{H}e^4\) mixtures. Phys. Rev. A 4, 1071–1077 (1971)

    Article  ADS  Google Scholar 

  3. Capel, H.W.: On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting. Physica 32, 966–988 (1966)

    Article  ADS  Google Scholar 

  4. Capel, H.W.: On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting II. Physica 33, 295–331 (1967)

    Article  ADS  Google Scholar 

  5. Capel, H.W.: On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting III. Physica 37, 423–441 (1967)

    Article  ADS  Google Scholar 

  6. Chatterjee, S., Shao, Q.-M.: Stein’s method of exchangeable pairs with application to the Curie–Weiss model, to appear in Ann. Appl. Prob. (2010)

  7. Chatterjee, S., Shao, Q.M.: Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Probab. 21(2), 464–483 (2011). MR 2807964 (2012b:60102)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costeniuc, M., Ellis, R.S., Otto, P.T.-H.: Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. 127(3), 495–552 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (1998)

    Book  MATH  Google Scholar 

  10. Döbler, C.: Stein’s method of exchangeable pairs for absolutely continuous, univariate distributions with applications to the Polya urn model, preprint, arXiv:1207.0533 2012

  11. Eichelsbacher, P., Löwe, M.: Moderate deviations for a class of mean-field models. Markov Process. Relat. Fields 10(2), 345–366 (2004)

    MATH  Google Scholar 

  12. Eichelsbacher, P., Löwe, M.: Moderate deviations for the overlap parameter in the Hopfield model. Probab. Theory Relat. Fields 130(4), 441–472 (2004)

    Article  MATH  Google Scholar 

  13. Eichelsbacher, P., Löwe, M.: Stein’s-method for dependent variabels occurring in statistical mechanics. Electron. J. Probab. 15(30), 962–988 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101(5–6), 999–1064 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44(2), 117–139 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ellis, R.S., Newman, C.M., Rosen, J.S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics, II. Z. Wahrsch. Verw. Gebiete 51(2), 153–169 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ellis, R.S., Otto, P.T., Touchette, H.: Analysis of phase transitions in the mean-field Blume–Emery–Griffiths model. Ann. Appl. Probab. 15(3), 2203–2254 (2005). MR 2152658 (2006d:60052)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gentz, B., Löwe, M.: Fluctuations in the Hopfield model at the critical temperature. Markov Process. Related Fields 5(4), 423–449 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Rinott, Y., Rotar, V.: On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted \(U\)-statistics. Ann. Appl. Probab. 7(4), 1080–1105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stein, C: Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, 1986. MR MR882007 (88j:60055)

  21. Stein, C., Diaconis, P., Holmes, S., and Reinert, G.: Use of Exchangeable Pairs in the Analysis of Simulations, Stein’s Method: Expository Lectures and Applications. IMS Lecture Notes Monogr. Ser., vol. 46, Inst. Math. Statist., Beachwood, OH, 2004, pp. 1–26. MR MR2118600 (2005j:65005)

Download references

Acknowledgments

The authors have been supported by Deutsche Forschungsgemeinschaft via SFB/TR 12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eichelsbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichelsbacher, P., Martschink, B. Rates of Convergence in the Blume–Emery–Griffiths Model. J Stat Phys 154, 1483–1507 (2014). https://doi.org/10.1007/s10955-014-0925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0925-y

Keywords

Mathematics Subject Classification

Navigation