Skip to main content

Advertisement

Log in

Level Statistics for One-Dimensional Schrödinger Operators and Gaussian Beta Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the level statistics for two classes of 1-dimensional random Schrödinger operators: (1) for operators whose coupling constants decay as the system size becomes large, and (2) for operators with critically decaying random potential. As a byproduct of (2) with our previous result (Kotani and Nakano in Festschrift Masatoshi Fukushima, 2013) imply the coincidence of the limits of circular and Gaussian beta ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author would like to thank F. Klopp for introducing this problem.

References

  1. Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. 146(3), 361–399 (2009)

    Google Scholar 

  2. Kotani, S., Nakano, F.: Level statistics for one-dimensional random Schrödinger operator with random decaying potential. Festschrift Masatoshi Fukushima. arXiv1210.4224 (2013)

  3. Kotani, S., Ushiroya, N.: One-dimensional Schrödinger operators with random decaying potentials. Commun. Math. Phys. 115, 247–266 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Kritchevski, E., Valkó, B., Virág, B.: The scaling limit of the critical one-dimensional random Sdhrödinger operators. Commun. Math. Phys. 314, 775–806 (2012)

    Article  ADS  MATH  Google Scholar 

  5. Valkó, B., Virág, V.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177, 463–508 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by JSPS Grant Kiban-C No. 22540140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Nakano.

Appendix

Appendix

In this section we recall basic tools used in this paper. The content below are borrowed from [2]. For \(f \in C^{\infty }(M)\) let \(R_{\beta } f :=(L + i\beta )^{-1}f\) \((\beta > 0)\), \(R f :=L^{-1}(f - \langle f \rangle )\). Then by Ito’s formula,

$$\begin{aligned} \int \limits _0^t e^{i \beta s} f(X_s) ds&= \left[ e^{i \beta s} (R_{\beta }f)(X_s) \right] _0^t + \int \limits _0^t e^{i \beta s} d M_s(f, \beta )\\ \int \limits _0^t f(X_s) ds&= \langle f \rangle t + \left[ (R f) (X_s) \right] _0^t + M_t(f,0). \end{aligned}$$

\(M_s(f, \beta ), M_s(f, 0)\) are the complex martingales whose variational process satisfy

$$\begin{aligned} \langle M(f, \beta ), M(f, \beta ) \rangle _t&= \int \limits _0^t [ R_{\beta } f, R_{\beta } f] (X_s) ds,\\ \left\langle M(f, \beta ), \overline{M(f, \beta )} \right\rangle _t&= \int \limits _0^t \left[ R_{\beta } f, \overline{R_{\beta } f}\right] (X_s) ds\\ \langle M(f, 0), M(f, 0) \rangle _t&= \int \limits _0^t [ R f, R f] (X_s) ds,\\ \left\langle M(f, 0), \overline{M(f, 0)} \right\rangle _t&= \int \limits _0^t \left[ R f, \overline{R f}\right] (X_s) ds \end{aligned}$$

where

$$\begin{aligned}{}[f_1, f_2](x)&:= L(f_1 f_2)(x) - (Lf_1)(x) f_2(x) - f_1(x) (Lf_2)(x)\\&= (\nabla f_1, \nabla f_2) (x). \end{aligned}$$

Then the integration by parts gives us the following formulas to be used frequently.

Lemma 5.15

$$\begin{aligned} (1)&\int \limits _0^t b(s) e^{i \beta s} e^{i \gamma \tilde{\theta }_s} f(X_s) ds\\&= \left[ b(s) e^{i \gamma \tilde{\theta }_s} e^{i \beta s} (R_{\beta }f)(X_s) \right] _0^t - \int \limits _0^t b'(s) e^{i \gamma \tilde{\theta }_s} e^{i \beta s} (R_{\beta }f)(X_s)ds\\&-\, \frac{i \gamma }{2 \kappa } \int \limits _0^t b(s) a(s) Re (e^{2i \theta _s}-1) e^{i \gamma \tilde{\theta }_s} e^{i \beta s} F(X_s) (R_{\beta }f) (X_s) ds\\&+ \int \limits _0^t b(s) e^{i \beta s} e^{i \gamma \tilde{\theta }_s} d M_s(f, \beta ). \end{aligned}$$
$$\begin{aligned} (2)&\int \limits _0^t b(s) e^{i \gamma \tilde{\theta }_s} f(X_s) ds\\&= \langle f \rangle \int \limits _0^t b(s) e^{i \gamma \tilde{\theta }_s} ds\\&+ \left[ b(s) e^{i \gamma \tilde{\theta }_s} (Rf)(X_s) \right] _0^t - \int \limits _0^t b'(s) e^{i \gamma \tilde{\theta }_s} (Rf)(X_s) ds\\&-\, \frac{i \gamma }{2 \kappa } \int \limits _0^t a(s)b(s) Re (e^{2i \theta _s} - 1) e^{i \gamma \tilde{\theta }_s} F(X_s) (Rf)(X_s) ds\\&+\, \int \limits _0^t b(s) e^{i \gamma \tilde{\theta }_s} dM_s(f, 0). \end{aligned}$$

We will also use following notation for simplicity.

$$\begin{aligned} g_{\kappa }&:= (L+2i \kappa )^{-1}F, \quad g := L^{-1}(F - \langle F \rangle ),\\ h_{\kappa , \beta }&:= (L + 2i \beta \kappa )^{-1}F g_{\kappa }\\ M_s(\kappa )&:= M_s (F, 2 \kappa ), \quad M_s := M_s (F, 0),\\ \widetilde{M}_s^{(\beta )}(\kappa )&:= M_s (F g_{\kappa }, \beta \kappa ), \quad \widetilde{M}_s := M_s (F g_{\kappa }, 0). \end{aligned}$$

Lemma 5.16

Let \(\Psi _n, n=1,2, \ldots \), and \(\Psi \) are continuous and increasing functions defined on a open set \(K \subset \mathbf{R}\) such that \(\lim _{n \rightarrow \infty }\Psi _n(x)=\Psi (x)\) pointwise.

If \(y_n \in Ran \;\Psi _n\), \(y \in Ran \;\Psi \) and \(y_n \rightarrow y\), then it holds that

$$\begin{aligned} \Psi _n^{-1}(y_n) \mathop {\rightarrow }\limits ^{n \rightarrow \infty } \Psi ^{-1}(y). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, F. Level Statistics for One-Dimensional Schrödinger Operators and Gaussian Beta Ensemble. J Stat Phys 156, 66–93 (2014). https://doi.org/10.1007/s10955-014-0987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0987-x

Keywords

Mathematics Subject Classification

Navigation