Skip to main content
Log in

Proximal-Point Algorithm Using a Linear Proximal Term

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Proximal-point algorithms (PPAs) are classical solvers for convex optimization problems and monotone variational inequalities (VIs). The proximal term in existing PPAs usually is the gradient of a certain function. This paper presents a class of PPA-based methods for monotone VIs. For a given current point, a proximal point is obtained via solving a PPA-like subproblem whose proximal term is linear but may not be the gradient of any functions. The new iterate is updated via an additional slight calculation. Global convergence of the method is proved under the same mild assumptions as the original PPA. Finally, profiting from the less restrictions on the linear proximal terms, we propose some parallel splitting augmented Lagrangian methods for structured variational inequalities with separable operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. He, B.S.: Inexact implicit methods for monotone general variational inequalities. Math. Program. Ser. A 86(1), 199–217 (1999)

    Article  MATH  Google Scholar 

  3. Martinet, B.: Régularization d’inéquations variationelles par approximations sucessives. Rev. Fr. Inf. Rech. Opér. Ser. R-3 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  4. Auslender, A., Teboulle, M.: Lagrangian duality and related multiplier methods for variational inequality problems. SIAM J. Optim. 10(4), 1097–1115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burke, J., Qian, M.J.: On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Math. Program. 88(1), 157–181 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. Ser. A 83(1), 113–123 (1998)

    Article  MathSciNet  Google Scholar 

  7. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Teboulle, M.: Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. Thomson Learning Inc. (2002)

  12. Blum, E., Oettli, W.: Mathematische Optimierung. Econometrics and Operations Research XX. Springer, Berlin (1975)

    Google Scholar 

  13. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    MATH  Google Scholar 

  14. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1(1), 93–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xue, G.L., Ye, Y.Y.: An efficient algorithm for minimizing a sum of Euclidean norms with applications. SIAM J. Optim. 7, 1017–1036 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. He.

Additional information

Communicated by T.L. Vincent.

B.S. He was supported by NSFC Grant 10571083 and Jiangsu NSF Grant BK2008255.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B.S., Fu, X.L. & Jiang, Z.K. Proximal-Point Algorithm Using a Linear Proximal Term. J Optim Theory Appl 141, 299–319 (2009). https://doi.org/10.1007/s10957-008-9493-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9493-0

Keywords

Navigation