Skip to main content
Log in

Convergence of Newton’s Method for Sections on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The present paper is concerned with the convergence problems of Newton’s method and the uniqueness problems of singular points for sections on Riemannian manifolds. Suppose that the covariant derivative of the sections satisfies the generalized Lipschitz condition. The convergence balls of Newton’s method and the uniqueness balls of singular points are estimated. Some applications to special cases, which include the Kantorovich’s condition and the γ-condition, as well as the Smale’s γ-theory for sections on Riemannian manifolds, are given. In particular, the estimates here are completely independent of the sectional curvature of the underlying Riemannian manifold and improve significantly the corresponding ones due to Dedieu, Priouret and Malajovich (IMA J. Numer. Anal. 23:395–419, 2003), as well as the ones in Li and Wang (Sci. China Ser. A. 48(11):1465–1478, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Li, C., Wang, J.H.: Convergence of Newton’s method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A 48(11), 1465–1478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adler, R., Dedieu, J.P., Margulies, J., Martens, M., Shub, M.: Newton method on Riemannian manifolds and a geometric model for human spine. IMA J. Numer. Anal. 22, 1–32 (2002)

    Article  MathSciNet  Google Scholar 

  4. Burke, J.V., Lewis, A., Overton, M.: Optimal stability and eigenvalue multiplicity. Found. Comput. Math. 1, 205–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mahony, R.E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebra Appl. 248, 67–89 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Fields Institute Communications, vol. 3, pp. 113–146. Am. Math. Soc., Providence (1994)

    Google Scholar 

  7. Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5, 69–79 (2000)

    MATH  Google Scholar 

  8. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferreira, O.P., Lucambio Pérez, L.R., Nemeth, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim 31, 133–151 (2005)

    Article  MATH  Google Scholar 

  10. Rapcsk, T.: Smooth Nonlinear Optimization in ℝn. Nonconvex Optimization and Its Applications, vol. 19. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  11. Martín-Márquez, V.: Nonexpansive mappings and monotone vector fields in Hadamard manifold. Commun. Appl. Anal. 13, 633–646 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Edelman, A., Arias, T.A., Smith, T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Smith, S.T.: Geometric optimization method for adaptive filtering. Ph.D. thesis, Harvard University, Cambridge, MA (1993)

  14. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  16. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, J.H., Huang, S., Li, C.: Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009)

    MATH  MathSciNet  Google Scholar 

  19. Wang, J.H., Li, C.: Convergence of the family of Euler-Halley type methods on Riemannian manifolds under the γ-condition. Taiwan. J. Math. 13(2), 585–606 (2009)

    MATH  Google Scholar 

  20. Wang, J.H., Li, C.: Uniqueness of the singular point of vector field on Riemannian manifold under the γ-condition. J. Complex. 22, 533–548 (2006)

    Article  MATH  Google Scholar 

  21. Li, C., Wang, J.H., Dedieu, J.P.: Smale’s point estimate theory for Newton’s method on Lie groups. J. Complex. 25, 128–151 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Németh, S.Z.: Monotone vector fields. Publ. Math. (Debr.) 54(3–4), 437–449 (1999)

    MATH  Google Scholar 

  25. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Oxford, Pergamon (1982)

    MATH  Google Scholar 

  26. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, pp. 185–196. Springer, New York (1986)

    Google Scholar 

  27. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s Theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26, 228–251 (2006)

    Article  MathSciNet  Google Scholar 

  29. Wang, X.H., Han, D.F.: Criterion α and Newton’s method. Chin. J. Numer. Appl. Math. 19, 96–105 (1997)

    MathSciNet  Google Scholar 

  30. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)

    Article  MATH  Google Scholar 

  32. DoCarmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Google Scholar 

  33. Chern, S.S.: Vector bundle with connection. In: Selected Papers, vol. 4. pp. 245–268. Springer, New York (1989)

    Google Scholar 

  34. Wells, R.O.: Differential Analysis on Complex Manifolds. GTM, vol. 65. Springer, New York (1980)

    MATH  Google Scholar 

  35. Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20(1), 123–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Wang.

Additional information

Communicated by J.-C. Yao.

This paper is partially supported by the National Natural Science Foundations of China (Grant No. 11001241).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.H. Convergence of Newton’s Method for Sections on Riemannian Manifolds. J Optim Theory Appl 148, 125–145 (2011). https://doi.org/10.1007/s10957-010-9748-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9748-4

Keywords

Navigation