Skip to main content
Log in

Exchangeable Gibbs partitions and Stirling triangles

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For two collections of nonnegative and suitably normalized weights W = (Wj) and V = (Vn,k), a probability distribution on the set of partitions of the set {1, …, n} is defined by assigning to a generic partition {Aj, j ≤ k} the probability Vn,k \(V_{n,k} W_{\left| {A_1 } \right|} \cdots W_{\left| {A_k } \right|} \), where |Aj| is the number of elements of Aj. We impose constraints on the weights by assuming that the resulting random partitions Π n of [n] are consistent as n varies, meaning that they define an exchangeable partition of the set of all natural numbers. This implies that the weights W must be of a very special form depending on a single parameter α ∈ [− ∞, 1]. The case α = 1 is trivial, and for each value of α ≠ = 1 the set of possible V-weights is an infinite-dimensional simplex. We identify the extreme points of the simplex by solving the boundary problem for a generalized Stirling triangle. In particular, we show that the boundary is discrete for − ∞ ≤ α < 0 and continuous for 0 ≤ α < 1. For α ≤ 0 the extremes correspond to the members of the Ewens-Pitman family of random partitions indexed by (α,θ), while for 0 < α < 1 the extremes are obtained by conditioning an (α,θ)-partition on the asymptotics of the number of blocks of Πn as n tends to infinity. Bibliography: 29 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Aldous, “Exchangeability and related topics,” in: École d’ Été de Probabilités de Saint-Flour, XIII-1983, Lecture Notes Math., 1117, Springer, Berlin (1985), pp. 1–198.

    Google Scholar 

  2. D. J. Aldous, “Tail behavior of birth-and-death and stochastically monotone processes,” Probab. Theory Related Fields, 62, No. 3, 375–394 (1983).

    MathSciNet  MATH  Google Scholar 

  3. R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach, European Mathematical Society, Zurich (2003).

    MATH  Google Scholar 

  4. A. Borodin and G. Olshanski, “Harmonic functions of multiplicative graphs and interpolation polynomials,” Electron. J. Combin., 7 (2000).

  5. P. Diaconis and D. Freedman, “Partial exchangeability and sufficiency,” in: Statistics: Applications and New Directions, J. K. Ghosh and J. Roy (eds.), Indian Statistical Institute, Calcutta (1984), pp. 205–236.

    Google Scholar 

  6. E. B. Dynkin, “Sufficient statistics and extreme points,” Ann. Probab., 6, 705–730 (1978).

    MathSciNet  MATH  Google Scholar 

  7. C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria, “Random maps, coalescing saddles, singularity analysis and Airy phenomena,” Random Structures Algorithms, 19, 194–246 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Flajolet, J. Gabarró, and H. Pekari, “Analytic urns,” Ann. Probab., 33, No. 3, 1200–1233 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Gnedin, “The representation of composition structures,” Ann. Probab., 25, No. 3, 1437–1450 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Gnedin and J. Pitman, “Regenerative composition structures,” Ann. Probab., 33, No. 2, 445–479 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. G. Kemeny, J. L. Snell, and A. W. Knopp, Denumerable Markov Chains, Springer, New York (1976).

    MATH  Google Scholar 

  12. S. V. Kerov, “Combinatorial examples in the theory of AF-algebras,” Zap. Nauchn. Semin. LOMI, 172, 55–67 (1989).

    Google Scholar 

  13. S. V. Kerov, “Coherent random allocations and the Ewens-Pitman sampling formula,” This issue.

  14. S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Amer. Math. Soc., Providence, Rhode Island (2003).

    MATH  Google Scholar 

  15. S. Kerov, “The boundary of Young lattice and random Young tableaux,” DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, 133–158 (1996).

    MathSciNet  Google Scholar 

  16. S. Kerov, A. Okounkov, and G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities,” Int. Math. Res. Not., 4, 173–199 (1998).

    Article  MathSciNet  Google Scholar 

  17. J. F. C. Kingman, Mathematics of Genetic Diversity, SIAM, Philadelphia (1980).

    Google Scholar 

  18. G. Labelle, P. Leroux, E. Pergola, and R. Pinzani, “Stirling numbers interpolation using permutations with forbidden sequences,” Discrete Math., 246, Nos. 1–3, 177–195 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Olshanski, q-Pascal triangle and q-Young, Unpublished notes, November 2001.

  20. J. Pitman, “Exchangeable and partially exchangeable random partitions,” Probab. Theory Related Fields, 102, 145–158 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Pitman, “Poisson-Kingman partitions,” in: Science and Statistics: A Festschrift for Terry Speed, D. R. Goldstein (ed.), Institute of Mathematical Statistics, Beachwood, Ohio (2003), pp. 1–34.

    Google Scholar 

  22. J. Pitman, “Partition structures derived from Brownian motion and stable subordinators,” Bernoulli, 3, 79–96 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Pitman, “An extension of de Finetti’s theorem,” Adv. Appl. Probab., 10, 268–270 (1978).

    Article  Google Scholar 

  24. J. Pitman, Combinatorial Stochastic Processes. Lecture notes for St. Flour course, July 2002. Technical Report no. 621, Dept. Statistics, U.C. Berkeley; http://stat-www.berkeley.edu/tech-reports/. To appear in Springer Lect. Notes Math.

  25. J. Pitman, “Brownian motion, bridge, excursion and meander characterized by sampling at independent uniform times,” Electron. J. Probab., 4, No. 11, 1–33 (1999).

    MathSciNet  Google Scholar 

  26. A. Regev and Y. Roichman, “Statistics of wreath products and generalized Bernoulli-Stirling numbers, ” Preprint (2004); arXiv:math.CO/0404354.

  27. E. G. Tsylova, “Probabilistic methods for obtaining asymptotic formulas for generalized Stirling numbers,” in: Statistical Estimation and Hypothesis Testing Methods [in Russian], Perm. Gos. Univ., Perm’ (1991), pp. 165–178.

    Google Scholar 

  28. E. G. Tsylova, “The asymptotic behavior of generalized Stirling numbers,” in: Combinatorial-Algebraic Methods in Applied Mathematics [in Russian], Gor’kov. Gos. Univ., Gorki (1985), pp. 143–154, 158.

    Google Scholar 

  29. A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes,” Funct. Anal. Appl., 30, 90–105 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 325, 2005, pp. 83–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnedin, A., Pitman, J. Exchangeable Gibbs partitions and Stirling triangles. J Math Sci 138, 5674–5685 (2006). https://doi.org/10.1007/s10958-006-0335-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0335-z

Keywords

Navigation