Skip to main content
Log in

Lebesgue measure in infinite dimension as an infinite-dimensional distribution

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Physicists deal with the formal Lebesgue measure on the space of smooth maps from one manifold to another. The aim of the present paper is to give two definitions of this measure as a distribution: using functional spaces of noncommutative geometry and those of white-noise theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Accardi and M. Bozejko, “Interacting Fock spaces and gaussianization of probability measures,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, 663–670 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Accardi and M. Nahmi, “Interacting Fock spaces and orthogonal polynomials in several variables,” in: N. Obata, T. Matsui, and A. Hora, eds., Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads, World Scientific (2003), pp. 192–205.

  3. S. Albeverio, “Wiener and Feynman path integrals and their applications,” in: V. Mandrekar and P. R. Masani, eds., Proc. Norbert Wiener Centenary Congress, East Lansing, MI, USA, November 27–December 3, 1994 Proc. Symp. Appl. Math., Vol 52, Amer. Math. Soc., Providence (1997), pp. 163–194.

    Google Scholar 

  4. Y. M. Berezansky and Y. O. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Vols. 1, 2, Kluwer Academic (1995).

  5. P. Cartier and C. Dewitt-Morette, book in preparation.

  6. A. Connes, “Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules,” K-Theory, 1, 519–548 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui, “Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle,” J. Funct. Anal., 171, 1–14 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Getzler, Cyclic Homology and the Path Integral of the Dirac Operator, preprint (1988).

  9. E. Getzler and A. Szenes, “On the Chern character of a theta-summable Fredholm module,” J. Funct. Anal., 84, 343–357 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Gilkey, Invariance Theory, the Heat Equation and the Atiyah–Singer Theorem, CRC Press (1995).

  11. C. Grosche and F. Steiner, Handbook on Feynman Path Integrals, Springer (1998).

  12. T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes, Vol. 13, Carleton Univ., Ottawa (1975).

    MATH  Google Scholar 

  13. T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise: An Infinite Dimensional Calculus, Kluwer Academic (1993).

  14. A. Jaffe, “Quantum harmonic analysis and geometric invariants,” Adv. Math., 143, 1–110 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Jaffe, A. Lesniewski, and K. Osterwalder, “Quantum K-theory. The Chern character,” Comm. Math. Phys., 118, 1–14 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Johnson and M. Lapidus, The Feynman Integral and Feynman Operational Calculus, Oxford Univ. Press (2000).

  17. J. D. S. Jones and R. Léandre, “L p Chen forms on loop spaces,” in: M. Barlow and M. Bingham, eds., Stochastic Analysis, Cambridge Univ. Press (1991), pp. 104–162.

  18. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific (2004).

  19. D. C. Khandrekar and L. Streit, “Constructing the Feynman integrand,” Ann. Physics, 1, 49–60 (1992).

    Article  Google Scholar 

  20. R. Léandre, “Cohomologie de Bismut–Nualart–Pardoux et cohomologie de Hochschild entiere,” in: J. Azéma, M. Emery, and M. Yor, eds., Sém. de Probabilités XXX in Honour of P. A. Meyer and J. Neveu, Lect. Notes Math., Vol. 1626, Springer (1996), pp. 68–100.

  21. R. Léandre, “Theory of distribution in the sense of Connes–Hida and Feynman path integral on a manifold,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 505–517 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Léandre, “White noise analysis, filtering equation and the index theorem for families,” in: H. Heyer and H. Saitô, eds., Infinite Dimensional Harmonic Analysis, to appear.

  23. R. Léandre and H. Ouerdiane, Connes–Hida Calculus and Bismut–Quillen Superconnections, preprint.

  24. R. Nest and B. Tsygan, “Algebraic index for families,” Adv. Math., 113, 151–205 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Obata, White Noise Calculus and Fock Space, Lect. Notes Math., Vol. 1577, Springer (1994).

  26. H. Ouerdiane, “Fonctionnelles analytiques avec conditions de croissance et application a l’analyse Gaussienne,” Jpn. J. Math., 20, 187–198 (1994).

    MATH  MathSciNet  Google Scholar 

  27. G. Roepstorff, Path Integral Approach to Quantum Physics. An Introduction, Springer (1994).

  28. L. Schulman, Techniques and Application of Path Integration, Wiley (1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Léandre.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 8, pp. 127–132, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Léandre, R. Lebesgue measure in infinite dimension as an infinite-dimensional distribution. J Math Sci 159, 833–836 (2009). https://doi.org/10.1007/s10958-009-9475-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9475-2

Keywords

Navigation