Skip to main content
Log in

Thermoelasticity that uses fractional heat conduction equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A survey of nonlocal generalizations of the Fourier law and heat conduction equation is presented. More attention is focused on the heat conduction with time and space fractional derivatives and on the theory of thermal stresses based on this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Petrov and J. Brankov, Contemporary Problems of Thermodynamics [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  2. Ya. S. Pidstryhach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  3. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  4. Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solids [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  5. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987); English translation: S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Newark (1993).

  6. R. L. Bagley and P. J. Torvik, “On the appearance of the fractional derivative in the behavior of real materials,” J. Appl. Mech., 51, No. 2, 294–298 (1984).

    Article  Google Scholar 

  7. P. L. Butzer and U. Westphal, “An introduction to fractional calculus,” in: R. Hilfer (editor), Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000), pp. 1–85.

    Google Scholar 

  8. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, Part II,” Geophys. J. Roy. Astron. Soc., 13, No. 5, 529–539 (1967).

    Google Scholar 

  9. A. Carpinteri and P. Cornetti, “A fractional calculus approach to the description of stress and strain localization,” Chaos, Solitons Fractals, 13, No. 1, 85–94 (2002).

    Article  MATH  Google Scholar 

  10. A. Carpinteri, P. Cornetti, and K. M. Kolwankar, “Calculation of the tensile and flexural strength of disordered materials using fractional calculus,” Chaos, Solitons Fractals, 21, No. 3, 623–632 (2004).

    Article  MATH  Google Scholar 

  11. A. Carpinteri, P. Cornetti, and S. Puzzi, “Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials,” Appl. Mech. Rev., 59, No. 5, 283–305 (2006).

    Article  Google Scholar 

  12. C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, 3, 83–101 (1948).

    MathSciNet  Google Scholar 

  13. C. Cattaneo, “Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée,” C. R. Acad. Sci., 247, No. 4, 431–433 (1958).

    MathSciNet  Google Scholar 

  14. D. S. Chandrasekharaiah, “Thermoelasticity with second sound: a review,” Appl. Mech. Rev., 39, No. 3, 355–376 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., 51, No. 12, 705–729 (1998).

    Article  Google Scholar 

  16. A. S. Chaves, “A fractional diffusion equation to describe Lévy flights,” Phys. Lett. A, 239, No. 1–2, 13–16 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. P. J. Chen and M. E. Gurtin, “On second sound in materials with memory,” Z. Angew. Math. Phys., 21, No. 2, 232–241 (1970).

    Article  MATH  Google Scholar 

  18. W. Day, The Thermodynamics of Simple Materials with Fading Memory, Springer, Berlin (1972).

    Google Scholar 

  19. H. Demiray and A. C. Eringen, “On nonlocal diffusion of gases,” Arch. Mech., 30, No. 1, 65–77 (1978).

    MATH  MathSciNet  Google Scholar 

  20. A. C. Eringen, “Theory of nonlocal thermoelasticity,” Int. J. Eng. Sci., 12, No. 12, 1063–1077 (1974).

    Article  MATH  Google Scholar 

  21. Y. Fujita, “Integrodifferential equation which interpolates the heat equation and the wave equation,” Osaka J. Math., 27, No. 2, 309–321 (1990).

    MATH  MathSciNet  Google Scholar 

  22. R. Gorenflo, A. Iskenderov, and Y. Luchko, “Mapping between solutions of fractional diffusion-wave equations,” Fractional Calculus Appl. Anal., 3, No. 1, 75–86 (2000).

    MATH  MathSciNet  Google Scholar 

  23. R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in: A. Carpinetti and F. Mainardi (editors), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien (1997), pp. 223–276.

    Google Scholar 

  24. R. Gorenflo and F. Mainardi, “Random walk models for space-fractional diffusion processes,” Fractional Calculus Appl. Anal., 1, No. 2, 167–191 (1998).

    MATH  MathSciNet  Google Scholar 

  25. R. Gorenflo and F. Mainardi, “Fractional calculus and stable probability distributions,” Arch. Mech., 50, No. 3, 377–388 (1998).

    MATH  MathSciNet  Google Scholar 

  26. R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, “Time fractional diffusion: a discrete random walk approach,” Nonlin. Dynamics, 29, Nos. 1–4, 129–143 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  27. A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, 31, No. 3, 189–208 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  28. M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Rational Mech. Anal., 31, No. 2, 113–126 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Hanyga, “Multidimensional solutions of space-time-fractional diffusion equations,” Proc. Roy. Soc. London A, 458, No. 2018, 429–450 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  30. R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Thermal Stresses, 22, No. 4–5, 451–476 (1999).

    MathSciNet  Google Scholar 

  31. R. B. Hetnarski and J. Ignaczak, “Nonclassical dynamical thermoelasticity,” Int. J. Solids Struct., 37, No. 1–2, 215–224 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Hilfer (editor), Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).

    MATH  Google Scholar 

  33. J. Ignaczak, “Generalized thermoelasticity and its applications,” in: R. B. Hetnarski (editor), Thermal Stresses III, Elsevier, New York (1989), pp. 279–354.

    Google Scholar 

  34. D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys., 61, No. 1, 41–73 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  35. D. D. Joseph and L. Preziosi, “Addendum to the paper ‘Heat waves,’” Rev. Mod. Phys., 62, No. 2, 375–391 (1990).

    Article  MathSciNet  Google Scholar 

  36. S. Kaliski, “Wave equations of thermoelasticity,” Bull. Acad. Pol. Sci. Sér. Sci. Techn., 13, No. 4, 253–260 (1965).

    Google Scholar 

  37. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  38. V. S. Kiryakova, Generalized Fractional Calculus and Applications, Longman, Harlow (1994).

    MATH  Google Scholar 

  39. H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).

    Article  MATH  Google Scholar 

  40. F. Mainardi, “Applications of fractional calculus in mechanics,” in: P. Rusev, I. Dimovski, and V. Kiryakova (editors), Transform Methods and Special Functions (Varna 96), Bulgarian Academy of Sciences, Sofia (1998), pp. 309–334.

    Google Scholar 

  41. F. Mainardi and R. Gorenflo, “On Mittag–Leffler-type functions in fractional evolution processes,” J. Comput. Appl. Math., 118, No. 1–2, 283–299 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus Appl. Anal., 4, No. 2, 153–192 (2001).

    MATH  MathSciNet  Google Scholar 

  43. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., 339, No. 1, 1–77 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  44. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., 37, No. 31, R161–R208 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  45. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

    MATH  Google Scholar 

  46. T. B. Moodi and R. J. Tait, “On thermal transients with finite wave speeds,” Acta Mech., 50, No. 1/2, 97–104 (1983).

    Article  MathSciNet  Google Scholar 

  47. R. R. Nigmatullin, “To the theoretical explanation of the ‘universal response,’” Phys. Stat. Sol. (b), 123, No. 2, 739–745 (1984).

    Article  Google Scholar 

  48. R. R. Nigmatullin, “On the theory of relaxation with ‘remnant’ temperature,” Phys. Stat. Sol. (b), 124, No. 1, 389–393 (1984).

    Article  Google Scholar 

  49. F. R. Norwood, “Transient thermal waves in the general theory of heat conduction with finite wave speeds,” J. Appl. Mech., 39, No. 3, 673–676 (1972).

    Google Scholar 

  50. J. W. Nunziato, “On heat conduction in materials with memory,” Quart. Appl. Math., 29, No. 2, 187–204 (1971).

    MATH  MathSciNet  Google Scholar 

  51. K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York (1974).

    MATH  Google Scholar 

  52. P. Paradisi, R. Cesari, F. Mainardi, A. Maurizi, and F. Tampieri, “A generalized Fick’s law to describe non-local transport effects,” Phys. Chem. Earth (B), 26, No. 4, 275–279 (2001).

    Google Scholar 

  53. P. Paradisi, R. Cesari, F. Mainardi, and F. Tampieri, “The fractional Fick’s law for non-local transport processes,” Physica A, 293, No. 1-2, 130–142 (2001).

    Article  MATH  Google Scholar 

  54. I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).

    MATH  Google Scholar 

  55. Y. Z. Povstenko, “Fractional heat conduction equation and associated thermal stresses,” J. Thermal Stresses, 28, No. 1, 83–102 (2005).

    Article  MathSciNet  Google Scholar 

  56. Y. Z. Povstenko, “Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation,” Int. J. Eng. Sci., 43, No. 11–12, 977–991 (2005).

    Article  MathSciNet  Google Scholar 

  57. Y. Z. Povstenko, “Thermoelasticity based on fractional heat conduction equation,” in: F. Ziegler, R. Heuer, and C. Adam (editors), Proceedings of the 6th International Congress on Thermal Stresses (May 26–29, 2005, Vienna, Austria), Vol. 2, Vienna University of Technology, Vienna (2005), pp. 501–504.

    Google Scholar 

  58. Y. Z. Povstenko, “Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation,” Int. J. Solids Struct., 44, No. 7–8, 2324–2348 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  59. Y. Z. Povstenko, “Fundamental solution to three-dimensional diffusion-wave equation and associated diffusive stresses,” Chaos, Solitons Fractals, 36, No. 4, 961–972 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  60. Y. Z. Povstenko, “Fractional radial diffusion in a cylinder,” J. Mol. Liquids, 137, No. 1–3, 46–50 (2008).

    Article  Google Scholar 

  61. Y. Z. Povstenko, “Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses,” J. Thermal Stresses, 31, No. 2, 127–148 (2008).

    Article  MathSciNet  Google Scholar 

  62. Yu. A. Rossikhin and M. V. Shitikova, “Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids,” Appl. Mech. Rev., 50, No. 1, 15–67 (1997).

    Article  MathSciNet  Google Scholar 

  63. A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications,” Chaos, 7, No. 4, 753–764 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  64. K. K. Tamma and X. Zhou, “Macroscale and microscale thermal transport and thermomechanical interactions: some noteworthy perspectives,” J. Thermal Stresses, 21, No. 3/4, 405–449 (1998).

    Article  Google Scholar 

  65. P. Vernotte, “Les paradoxes de la théorie continue de l’équation de la chaleur,” C. R. Acad. Sci., 247, No. 22, 3154–3155 (1958).

    Google Scholar 

  66. G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,” Phys. Rep., 371, No. 6, 461–580 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 2, pp. 239–246, April–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povstenko, Y.Z. Thermoelasticity that uses fractional heat conduction equation. J Math Sci 162, 296–305 (2009). https://doi.org/10.1007/s10958-009-9636-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9636-3

Keywords

Navigation