Skip to main content
Log in

On Epstein’s zeta function. II

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In the present work, properties of the Epstein zeta function ζ3(s) associated with the sum of three squares are studied. These properties are the following: the behavior in the critical strip, mean value theorems, the distribution of zeros, and the functional equation of a special type. Some conjectures are advanced. Bibliography: 20 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Oxford University Press Inc., New York (1986).

    MATH  Google Scholar 

  2. O. M. Fomenko, “On Epstein’s zeta function,” Zap. Nauchn. Semin. POMI, 286, 169–178 (2002).

    Google Scholar 

  3. K. Chandrasekharan and R. Narasimhan, “The approximate functional equation for a class of zeta functions,” Math. Ann., 152, 30–64 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Müller, “The mean square of Dirichlet series associated with automorphic forms,” Monatsch. Math., 113, 121–159 (1992).

    Article  MATH  Google Scholar 

  5. K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta function,” J. London Math. Soc. (2), 10, 482–486 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. E. Ingham, “Mean value theorems in the theory of the Riemann zeta function,” Proc. London. Math. Soc., 27, 273–300 (1928).

    Article  Google Scholar 

  7. H. L. Montgomery and R. C. Vaughan, “Hilbert’s inequality,” J. London Math. Soc. (2), 8, 73–82 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  8. O. M. Fomenko, “The distribution of lattice points on certain second-order surfaces,” Zap. Nauchn. Semin. POMI, 212, 164–195 (1994).

    MathSciNet  Google Scholar 

  9. K. Ramahandra and A. Sankaranarayanan, “Hardy’s theorem for zeta functions of quadratic forms,” Proc. Indian Acad. Sci. (Math. Sci.), 106, No. 3, 217–226 (1996).

    Article  MathSciNet  Google Scholar 

  10. C. L. Siegel, “Contribution to the theory of the Dirichlet L-series and the Epstein zeta function,” Ann. Math., 44, 143–172 (1943).

    Article  Google Scholar 

  11. B. C. Berndt, “The number of zeros for ζ(k)(s),” J. London Math. Soc. (2) 2, 577–580 (1970).

    MATH  MathSciNet  Google Scholar 

  12. E. C. Titchmarsh, Theory of Functions, Oxford (1932).

  13. E. Landau, “Uber die Hardysche Entdekung unendlich vieler Nullstellen der Zetafunktion mit reellem Teil \( \frac{1}{2} \),” Math. Ann., 76, 212–243 (1915).

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Heke, “Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden,” in: Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen (1983), pp. 708–730.

    Google Scholar 

  15. V. G. Zhuravlev, “The zeros of Dirichlet series with a functional equation on the critical line,” in: Function Theory and Functional Analysis [in Russian], Vladimir (1974), pp. 52–64.

  16. A. F. Lavrik. “An approximate functional equation for the Hecke zeta function of an imaginary quadratic field,” Mat. Zametki, 2, 475–482 (1967).

    MathSciNet  Google Scholar 

  17. A. F. Lavrik, “Functional equations of the Dirichlet functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 31, 431–442 (1967).

    MathSciNet  Google Scholar 

  18. R. M. Kaufman, “A. F. Lavrik’s truncated equations,” Zap. Nauchn. Semin. LOMI, 76, 124–158 (1978).

    MATH  MathSciNet  Google Scholar 

  19. N. V. Proskurin, “On the Dirichlet series related to the cubic theta function,” Zap. Nauchn. Semin. POMI, 337, 212–232 (2006).

    MATH  Google Scholar 

  20. N. V. Proskurin, “On the zeros of the L-function associated with the cubic theta function,” Zap. Nauchn. Semin. POMI, 350, 173–186 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Fomenko.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 371, 2009, pp. 157–170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, O.M. On Epstein’s zeta function. II. J Math Sci 166, 214–221 (2010). https://doi.org/10.1007/s10958-010-9862-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9862-8

Keywords

Navigation