Skip to main content
Log in

On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We survey recent results related to uniqueness problems for parabolic equations for measures. We consider equations of the form ∂ t μ = L * μ for bounded Borel measures on ℝd × (0, T), where L is a second order elliptic operator, for example, \( Lu = {\Delta_x}u + \left( {b,{\nabla_x}u} \right) \), and the equation is understood as the identity

$$ \int \left( {{\partial_t}u + Lu} \right)d\mu = 0 $$

for all smooth functions u with compact support in ℝd × (0, T). Our study are motivated by equations of such a type, namely, the Fokker–Planck–Kolmogorov equations for transition probabilities of diffusion processes. Solutions are considered in the class of probability measures and in the class of signed measures with integrable densities. We present some recent positive results, give counterexamples, and formulate open problems. Bibliography: 34 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Bogachev, N. V. Krylov, and M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,” Commun. Partial Diff. Equations 26, No. 11–12, 2037–2080 (2001).

    Article  MATH  Google Scholar 

  2. R. Z. Hasminskii, “Ergodic properties of reccurent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations” [in Russian], Teor. Veroyatn. Primen. 5, 196–214 (1960); English transl.: Theory Probab. Appl. 5, 179–196 (1960).

    MathSciNet  Google Scholar 

  3. V. I. Bogachev, G. Da Prato, and M. Röckner, “Existence of solutions to weak parabolic equations for measures,” Proc. London Math. Soc. 88, No. 3, 753–774 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. I. Bogachev, G. Da Prato, and M. Röckner, “On parabolic equations for measures,” Commun. Partial Diff. Equations 33, No. 1–3, 397–418 (2008).

    Article  MATH  Google Scholar 

  5. V. I. Bogachev, G. Da Prato, M. Röckner, and W. Stannat, “Uniqueness of solutions to weak parabolic equations for measures,” Bull. London Math. Soc. 39, No. 4, 631–640 (2007).

    Article  MATH  Google Scholar 

  6. S. V. Shaposhnikov, “On uniqueness of a probability solution to the Cauchy problem for the Fokker–Planck–Kolmogorov equation” [in Russian], Theory Probab. Appl. 56 (2011), No. 1, 77–99 (2011); English tranls.: Theor. Probab. Appl. 56, No. 1 (2012).

  7. L. Wu and Y. Zhang, “A new topological approach to the L∞-uniqueness of operators and L1-uniqueness of Fokker–Planck equations,” J. Funct. Anal. 241, 557–610 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. L. Lemle, “L 1(ℝd , dx)-Uniqueness of weak solutions for the Fokker–Planck equation associated with a class of Dirichlet operators,” Elect. Research Announc. Math. Sci. 15, 65–70 (2008).

    MathSciNet  MATH  Google Scholar 

  9. S. V. Shaposhnikov, “On the uniqueness of integrable and probability solutions to the Cauchy problem for the Fokker–Planck–Kolmogorov equation” [in Russian], Dokl. Ross. Akad. Nauk 439, No. 3, 331–335 (2011); English tranls.: Dokl. Math. (2011).

    Google Scholar 

  10. A. N. Tychonoff, “A uniqueness theorem for the heat equation” [in Russian], Mat. Sb. 42, 199–216 (1935).

    MATH  Google Scholar 

  11. D. V. Widder, “Positive temperatures on the infinite rod,” Trans. Am. Math. Soc. 55, No. 1, 85–95 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. G. Aronson and P. Besala, “Uniqueness of solutions of the Cauchy problem for parabolic equations,” J. Math. Anal. Appl. 13, 516–526 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. G. Aronson, “Non-negative solutions of linear parabolic equations,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser. 22, 607–694 (1968).

    MathSciNet  MATH  Google Scholar 

  14. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey (1964).

    MATH  Google Scholar 

  15. C. Le Bris and P. L. Lions, “Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients,” Commun. Partial Diff. Equations 33, 1272–1317 (2008).

    Article  MATH  Google Scholar 

  16. A. Figalli, “Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients,” J. Funct. Anal. 254, No. 1, 109–153 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Ishige and M. Murata, “Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser. 30, No. 1, 171–223 (2001).

    MathSciNet  MATH  Google Scholar 

  18. Y. Pinchover, “On uniqueness and nonuniqueness of positive Cauchy problem for parabolic equations with unbounded coefficients,” Math. Z. 233, 569–586 (1996).

    MathSciNet  Google Scholar 

  19. O. A. Oleinik and E. V. Radkevich, “The method of introducing a parameter in the study of evolutionary equations” [in Russian], Usp. Mat. Nauk 33, No. 5, 6–76 (1978); English transl.: Russ. Math. Surv. 33, No. 5, 7–84 (1978).

    MathSciNet  Google Scholar 

  20. M. Röckner and X. Zhang, “Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients,” C. R. Math. Acad. Sci. Paris 348, No. 7–8, 435–438 (2010).

    MathSciNet  MATH  Google Scholar 

  21. A. N. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung,” Math. Ann. 104, No. 1, 415–458 (1931).

    Article  MathSciNet  Google Scholar 

  22. I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes. II, Springer, New York etc. (1975).

    MATH  Google Scholar 

  23. D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes! Springer, Berlin etc. (1979).

    Google Scholar 

  24. G. Metafune, D. Pallara, and M. Wacker, “Feller semigroupe om ℝN,” Semigroup Forum 65, No. 2, 159–205 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Metafune, D. Pallara, and A. Rhandi, “Global properties of transition probabilities of singular diffusions,” Theory Probab. Appl. 54, No. 1, 116–148 (2009).

    MathSciNet  Google Scholar 

  26. V. I. Bogachev, M. Röckner, and W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions” [in Russian], Mat. Sb. 193, No. 7, 3–36 (2002); English transl.: Sb. Math. 193, No. 7, 945–976 (2002).

    Google Scholar 

  27. S. V. Shaposhnikov, “The nonuniqueness of solutions to elliptic equations for probability measures” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 420, No. 3, 320–323 (2008); English transl.: Dokl. Math. 77! No. 3, 401–403 (2008).

    MathSciNet  Google Scholar 

  28. S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures,” J. Funct. Anal. 254, No. 10, 2690–2705 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures,” J. Math. Sci. (New York) 176, No. 6, 759–773 (2011).

    Article  Google Scholar 

  30. S. Albeverio, V. Bogachev, and M. Röckner, “On uniqueness of invariant measures for finite- and infinite-dimensional diffusions” Commun. Pure Appl. Math. 52, No. 3, 325–362 (1999).

    Article  MATH  Google Scholar 

  31. N. V. Krylov, “Parabolic and elliptic equations with VMO coefficients,” Commun. Partial Diff. Equations 32, No. 3, 453–475 (2007).

    Article  MATH  Google Scholar 

  32. O. A. Ladyz’enskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type! Am. Math. Soc., Providence RI (1968).

  33. V. I. Bogachev, N. V. Krylov, and M. Röckner, “Elliptic and parabolic equations for measures” [in Russian], Usp. Mat. Nauk 64, No. 6, 5–116 (2009); English transl.: Russ. Math. Surv. 64, No. 6, 973–1078 (2009).

  34. F. O. Porper and S. D. Eidel’man, “Two-sided estimates of fundamental solutions of second order parabolic equations, and some applications” [in Russian], Usp. Mat. Nauk 39, No. 3, 107–156 (1984): English transl.: Russ. Math. Surv. 39, No. 3, 119–178 (1984).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Dedicated to Professor N. V. Krylov on the occasion of his 70th birthday

Translated from Problems in Mathematical Analysis 61, October 2011, pp. 9–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogachev, V.I., Röckner, M. & Shaposhnikov, S.V. On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures. J Math Sci 179, 7–47 (2011). https://doi.org/10.1007/s10958-011-0581-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0581-6

Keywords

Navigation