Skip to main content
Log in

Estimates of Tempered Stable Densities

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Estimates of densities of convolution semigroups of probability measures are given under specific assumptions on the corresponding Lévy measure and the Lévy–Khinchin exponent. The assumptions are satisfied, e.g., by tempered stable semigroups of J. Rosiński.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271(1), 179–198 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bogdan, K., Sztonyk, P.: Estimates of potential kernel and Harnack’s inequality for anisotropic fractional Laplacian. Stud. Math. 181(2), 101–123 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, Z.-Q., Kim, P., Kumagai, T.: Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342(4), 833–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1), 27–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140(1–2), 277–317 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Constantine, G.M., Savits, T.H.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dziubański, J.: Asymptotic behaviour of densities of stable semigroups of measures. Probab. Theory Relat. Fields 87, 459–467 (1991)

    Article  MATH  Google Scholar 

  8. Głowacki, P.: Lipschitz continuity of densities of stable semigroups of measures. Colloq. Math. 66(1), 29–47 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Głowacki, P., Hebisch, W.: Pointwise estimates for densities of stable semigroups of measures. Stud. Math. 104, 243–258 (1993)

    MATH  Google Scholar 

  10. Grzywny, T.: Potential theory for α-stable relativistic process. Master Thesis, Institut of Mathematics and Computer Sciences, Wrocław University of Technology (2005)

  11. Grzywny, T., Ryznar, M.: Two-sided optimal bounds for Green functions of half-spaces for relativistic α-stable process. Potential Anal. 28(3), 201–239 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hiraba, S.: Asymptotic behaviour of densities of multi-dimensional stable distributions. Tsukuba J. Math. 18(1), 223–246 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Hiraba, S.: Asymptotic estimates for densities of multi-dimensional stable distributions. Tsukuba J. Math. 27(2), 261–287 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Houdré, C., Kawai, R.: On layered stable processes. Bernoulli 13(1), 252–278 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jacob, N.: Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups, vol. I. Imp. Coll. Press, London (2001)

    MATH  Google Scholar 

  16. Kulczycki, T., Siudeja, B.: Intrinsic ultracontractivity of the Feynman–Kac semigroup for relativistic stable processes. Trans. Am. Math. Soc. 358(11), 5025–5057 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lewandowski, M.: Point regularity of p-stable density in ℛd and Fisher information. Probab. Math. Stat. 19(2), 375–388 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Picard, J.: Density in small time at accessible points for jump processes. Stochastic Process. Appl. 67(2), 251–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pruitt, W.E., Taylor, S.J.: The potential kernel and hitting probabilities for the general stable process in R N. Trans. Am. Math. Soc. 146, 299–321 (1969)

    Article  MathSciNet  Google Scholar 

  20. Rosinski, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 677–707 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ryznar, M.: Estimates of Green function for relativistic α-stable process. Potential Anal. 17(1), 1–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Sztonyk, P.: Regularity of harmonic functions for anisotropic fractional Laplacians. Math. Nach. (to appear)

  24. Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. Trans. Am. Math. Soc. 359(6), 2851–2879 (2007)

    Article  MATH  Google Scholar 

  25. Zaigraev, A.: On asymptotic properties of multidimensional α-stable densities. Math. Nachr. 279(16), 1835–1854 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zolotarev, V.M.: One-Dimensional Stable Distributions. Am. Math. Soc., Providence (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sztonyk.

Additional information

The research was supported by The State Committee for Scientific Research (Poland, KBN 1 P03A 026 29) and The Alexander von Humboldt Foundation (Germany, 3-PL/1122470).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sztonyk, P. Estimates of Tempered Stable Densities. J Theor Probab 23, 127–147 (2010). https://doi.org/10.1007/s10959-009-0208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0208-8

Keywords

Mathematics Subject Classification (2000)

Navigation