Skip to main content
Log in

Central Limit Theorems for Gromov Hyperbolic Groups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we study asymptotic properties of symmetric and nondegenerate random walks on transient hyperbolic groups. We prove a central limit theorem and a law of iterated logarithm for the drift of a random walk, extending previous results by S. Sawyer and T. Steger and of F. Ledrappier for certain CAT(−1)-groups. The proofs use a result by A. Ancona on the identification of the Martin boundary of a hyperbolic group with its Gromov boundary. We also give a new interpretation, in terms of Hilbert metrics, of the Green metric, first introduced by S. Brofferio and S. Blachère.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Positive Harmonic Functions and Hyperbolicity. Springer Lecture Notes, vol. 1344. Springer, Berlin (1987)

    Google Scholar 

  2. Ancona, A.: Théorie du Potentiel sur les Graphes et les Variétés. Springer Lecture Notes in Math., vol. 1427, pp. 4–112. Springer, Berlin (1990)

    Google Scholar 

  3. Bear, H.S.: A geometric characterization of Gleason parts. Proc. Am. Math. Soc. 16, 407–412 (1965)

    MathSciNet  Google Scholar 

  4. Bellman, R.: Limit theorems for non-commutative operations. I. Duke Math. J. 21, 491–500 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blachère, S., Brofferio, S.: Internal diffusion limited aggregation on discrete groups having exponential growth. Probab. Theory Relat. Fields 137(3–4), 323–343 (2007)

    MATH  Google Scholar 

  6. Blachère, S., Haïssinsky, P., Mathieu, P.: Asymptotic entropy and Green speed for random walks on countable groups. Ann. Probab. 36(3), 1134–1152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blachère, S., Haïssinsky, P., Mathieu, P.: Harmonic measures versus quasiconformal measures for hyperbolic groups. Preprint

  8. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Progress in Probability and Statistics, vol. 8. Birkhäuser Boston, Cambridge (1985). xii+283 pp., ISBN: 0-8176-3324-3

    MATH  Google Scholar 

  9. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999). xxii+643 pp., ISBN: 3-540-64324-9

    MATH  Google Scholar 

  10. Dyubina, A.: An example of the rate of departure to infinity for a random walk on a group. Russ. Math. Surv. 54, 1023–1024 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erschler, A.: Asymptotics of drift and entropy for a random walk on groups. Russ. Math. Surv. 56(3), 580–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilch, L.: Rate of escape of random walks. Ph.D. thesis, Graz (2007)

  14. Gordin, M.I.: The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188, 739–741 (1969)

    MathSciNet  Google Scholar 

  15. Gordin, M.I., Holzmann, H.: The central limit theorem for stationary Markov chains under invariant splittings. Stoch. Dyn. 4(1), 15–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. MSRI Publ., vol. 8, pp. 75–263. Springer, New York (1987)

    Google Scholar 

  17. Guivarc’h, Y.: Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. Astérisque 74, 47–98 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Guivarc’h, Y., Le Page, É.: Simplicité de spectres de Lyapunov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif. In: Random Walks and Geometry, pp. 181–259. Walter de Gruyter GmbH & Co. KG, Berlin (2004)

    Google Scholar 

  19. Hall, P., Heyde, C.C.: Martingale Limit Theory and its Applications. Academic Press, San Diego (1980)

    Google Scholar 

  20. Hennion, H., Hervé, L.: Central limit theorems for iterated random Lipschitz mappings. Ann. Probab. 32(3A), 1934–1984 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaimanovich, V.: The Poisson formula for groups with hyperbolic properties. Ann. Math. (2) 152(3), 659–692 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Karlsson, A., Ledrappier, F.: On laws of large numbers for random walks. Ann. Probab. 34(5), 1693–1706 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karlsson, A., Ledrappier, F.: Linear drift and Poisson boundary for random walks. Pure Appl. Math. Q. 3, 1027–1036 (2007)

    MathSciNet  Google Scholar 

  24. Karlsson, A., Ledrappier, F.: Propriété de Liouville et vitesse de fuite du mouvement Brownien. C. R. Acad. Sci. Paris, Ser. I 344, 685–690 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Karlsson, A., Ledrappier, F.: Noncommutative ergodic theorems. Preprint

  26. Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883–909 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ledrappier, F.: Some asymptotic properties of random walks on free groups. CRM Proc. Lect. Notes 28, 117–152 (2001)

    MathSciNet  Google Scholar 

  28. Le Page, É.: Théorèmes de la limite centrale pour certains produits de matrices aléatoires. C. R. Acad. Sci. Paris Sér. I Math. 292(6), 379–382 (1981)

    MATH  MathSciNet  Google Scholar 

  29. Liverani, C.: Decay of correlations. Ann. Math. (2) 142(2), 239–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nagnibeda, T., Woess, W.: Random walks on trees with finitely many cone types. J. Theor. Probab. 15(2), 383–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ol’shanskii, A.Yu.: Almost every group is hyperbolic. Int. J. Algebra Comput. 2(1), 1–17 (1992)

    Article  MathSciNet  Google Scholar 

  32. Revelle, D.: Rate of escape of random walks on wreath products and related groups. Ann. Probab. 31(4), 1917–1934 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sawyer, S., Steger, T.: The rate of escape for anisoptopic random walks in a tree. Probab. Theory Relat. Fields 76(2), 207–230 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Storm, P.A.: The barycenter method on singular spaces. Comment. Math. Helv. 82(1), 133–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Varopoulos, N.T.: Théorie du potentiel sur les groupes et des varietés. C. R. Acad. Sci. Paris Sér. A–B 302, 203–205 (1986)

    MATH  MathSciNet  Google Scholar 

  36. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Björklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björklund, M. Central Limit Theorems for Gromov Hyperbolic Groups. J Theor Probab 23, 871–887 (2010). https://doi.org/10.1007/s10959-009-0230-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0230-x

Keywords

Mathematics Subject Classification (2000)

Navigation