Skip to main content
Log in

Self-similar Random Fields and Rescaled Random Balls Models

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study generalized random fields which arise as rescaling limits of spatial configurations of uniformly scattered random balls as the mean radius of the balls tends to 0 or infinity. Assuming that the radius distribution has a power-law behavior, we prove that the centered and renormalized random balls field admits a limit with self-similarity properties. Our main result states that all self-similar, translation- and rotation-invariant Gaussian fields can be obtained through a unified zooming procedure starting from a random balls model. This approach has to be understood as a microscopic description of macroscopic properties. Under specific assumptions, we also get a Poisson-type asymptotic field. In addition to investigating stationarity and self-similarity properties, we give L 2-representations of the asymptotic generalized random fields viewed as continuous random linear functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J.: The Geometry of Random Field. Wiley, New York (1981)

    Google Scholar 

  2. Benassi, A., Jaffard, S., Roux, D.: Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13(1), 19–89 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Biermé, H.: Champs aléatoires: autosimilarité, anisotropie et étude directionnelle. PhD report. http://www.math-info.univ-paris5.fr/~bierme/recherche/Thesehb.pdf (2005)

  4. Biermé, H., Estrade, A.: Poisson random balls: self-similarity and X-ray images. Adv. Appl. Probab. 38(1), 1–20 (2006)

    Article  Google Scholar 

  5. Biermé, H., Estrade, A., Kaj, I.: About scaling behavior of random balls models. In: S 4 G 6th Int. Conference, pp. 63–68. Union of Czech Mathematicians and Physicists, Prague (2006)

    Google Scholar 

  6. Chi, Z.: Construction of stationary self-similar generalized fields by random wavelet expansion. Probab. Theory Relat. Fields 121, 269–300 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cioczek-Georges, R., Mandelbrot, B.B.: A class of micropulses and antipersistent fractional Brownian motion. Stoch. Process. Their Appl. 60, 1–18 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cioczek-Georges, R., Mandelbrot, B.B.: Alternative micropulses and fractional Brownian motion. Stoch. Process. Their Appl. 64, 143–152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobrushin, R.L.: Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7(1), 1–28 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guelfand, I.M., Chilov, G.E.: Les Distributions I. Dunod, Paris (1962)

    Google Scholar 

  11. Guelfand, I.M., Vilenkin, N.Y.: Les Distributions IV: Applications de l’Analyse Harmonique. Dunod, Paris (1967)

    MATH  Google Scholar 

  12. Guérin, C.A.: Wavelet analysis and covariance structure of non-stationary processes. J. Fourier Anal. Appl. 6, 403–425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Herbin, E.: From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motion. Rocky Mt. J. Math. 36(4), 1249–1284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaj, I.: Limiting fractal random processes in heavy-tailed systems. In: Fractals in Engineering, New Trends in Theory and Applications, pp. 199–218. Springer, London (2005)

    Google Scholar 

  15. Kaj, I., Leskelä, L., Norros, I., Schmidt, V.: Scaling limits for random fields with long-range dependence. Ann. Probab. 35, 528–550 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaj, I., Taqqu, M.S.: Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: Vares, M.E., Sidoravicius, V. (eds.) Out of Equilibrium 2. Progress in Probability, vol. 60, pp. 383–427. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  17. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  18. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Medina, J.M., Cernuschi-Frías, B.: A synthesis of 1/f process via Sobolev spaces and fractional integration. IEEE Trans. Inf. Theory 51(12), 4278–4285 (2005)

    Article  Google Scholar 

  20. Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Signal Process. 45, 1049–1059 (2001)

    Article  Google Scholar 

  21. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  22. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  23. Takenaka, S.: Integral-geometric construction of self-similar stable processes. Nagoya Math. J. 123, 1–12 (1991)

    MATH  MathSciNet  Google Scholar 

  24. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions (I). Springer, Berlin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermine Biermé.

Additional information

This work was supported by ANR grant “mipomodim” ANR-05-BLAN-0017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biermé, H., Estrade, A. & Kaj, I. Self-similar Random Fields and Rescaled Random Balls Models. J Theor Probab 23, 1110–1141 (2010). https://doi.org/10.1007/s10959-009-0259-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0259-x

Mathematics Subject Classification (2000)

Navigation