Skip to main content
Log in

Branching Random Walks in Space–Time Random Environment: Survival Probability, Global and Local Growth Rates

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the survival probability and the growth rate for branching random walks in random environment (BRWRE). The particles perform simple symmetric random walks on the d-dimensional integer lattice, while at each time unit, they split into independent copies according to time–space i.i.d. offspring distributions. The BRWRE is naturally associated with the directed polymers in random environment (DPRE), for which the quantity called the free energy is well studied. We discuss the survival probability (both global and local) for BRWRE and give a criterion for its positivity in terms of the free energy of the associated DPRE. We also show that the global growth rate for the number of particles in BRWRE is given by the free energy of the associated DPRE, though the local growth rate is given by the directional free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya, K., Karlin, S.: Branching processes with random environments. I. Extinction probabilities. Ann. Math. Stat. 42, 1499–1520 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K., Karlin, S.: Branching processes with random environments. II. Limit theorems. Ann. Math. Stat. 42, 1843–1858 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Athreya, K., Ney, P.: Branching Processes. Springer, New York (1972)

    MATH  Google Scholar 

  4. Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab. 18(2), 1462–1482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biggins, J.: Growth rates in the branching random walk. Z. Wahrsch. Verw. Geb. 48, 17–34 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkner, M.: Particle systems with locally dependent branching: long-time behaviour, genealogy and critical parameters. Ph.D. Thesis, Johann Wolfgang Goethe-Universität, Frankfurt (2003)

  7. Birkner, M., Geiger, J., Kersting, G.: Branching processes in random environment—a view on critical and subcritical cases. In: Interacting Stochastic Systems, pp. 269–291. Springer, Berlin (2005)

    Chapter  Google Scholar 

  8. Carmona, P., Hu, Y.: Fluctuation exponents and large deviations for directed polymer in a random environment. Stoch. Process. Appl. 112, 285–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Comets, F., Popov, S.: Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 3, 273–299 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in random environment: path localization and strong disorder. Bernoulli 9, 705–723 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in random environment: a review. Adv. Stud. Pure Math. 39, 115–142 (2004)

    MathSciNet  Google Scholar 

  12. Comets, F., Vargas, V.: Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277 (2004)

    MathSciNet  Google Scholar 

  13. Durrett, R.: Probability–Theory and Examples, 3rd edn. Brooks/Cole–Thomson Learning, Pacific Grove (2005)

    MATH  Google Scholar 

  14. Gantert, N., Müller, S., Popov, S., Vachkovskaia, M.: Survival of branching random walks in random environment. J. Theor. Probab. (to appear)

  15. Greven, A., den Hollander, F.: Branching random walk in random environment: phase transitions for local and global growth rates. Probab. Theory Relat. Fields 91, 195–249 (1992)

    Article  MATH  Google Scholar 

  16. Griffeath, D.: The binary contact path process. Ann. Probab. 11, 692–705 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grimmett, G., Hiemer, P.: Directed percolation and random walk. In: In and Out of Equilibrium, Mambucaba, 2000. Progr. Probab., vol. 51, pp. 273–297. Birkhaüser, Basel (2002)

    Chapter  Google Scholar 

  18. Hu, Y., Yoshida, N.: Localization for branching random walks in random environment. Stoch. Proc. Appl. 119, 1632–1651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lacoin, H.: New bounds for the free energy of directed polymers in dimensions 1+1 and 1+2. Preprint

  21. Liu, Q., Watbled, F.: Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment. Stoch. Process. Appl. 119, 3101–3132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, S.: A criterion for transience of multidimensional branching random walk in random environment. Electron. J. Probab. 13, 1189–1202 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Nakashima, M.: Almost sure central limit theorem for branching random walk in random environment. Preprint (2008)

  24. Rockafeller, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  25. Smith, W.: Necessary conditions for almost sure extinction of a branching process with random environment. Ann. Math. Stat. 39, 2136–2140 (1968)

    Article  MATH  Google Scholar 

  26. Smith, W.L., Wilkinson, W.E.: On branching processes in random environments. Ann. Math. Stat. 40, 814–827 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, R., Zhou, X.Y.: A remark on diffusion on directed polymers in random environment. J. Stat. Phys. 85, 277–289 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yoshida, N.: Central limit theorem for branching random walk in random environment. Ann. Appl. Probab. 18, 1619–1635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yoshida, N.: Phase transitions for the growth rate of linear stochastic evolutions. J. Stat. Phys. 133, 1033–1058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Comets.

Additional information

F. Comets partially supported by ANR Polintbio.

N. Yoshida partially supported by JSPS Grant-in-Aid for Scientific Research, Kiban (C) 21540125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comets, F., Yoshida, N. Branching Random Walks in Space–Time Random Environment: Survival Probability, Global and Local Growth Rates. J Theor Probab 24, 657–687 (2011). https://doi.org/10.1007/s10959-009-0267-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0267-x

Mathematics Subject Classification (2000)

Navigation