Skip to main content
Log in

Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (X i ) be a stationary and ergodic Markov chain with kernel Q and f an L 2 function on its state space. If Q is a normal operator and f=(IQ)1/2 g (which is equivalent to the convergence of \(\sum_{n=1}^{\infty}\frac{\sum_{k=0}^{n-1}Q^{k}f}{n^{3/2}}\) in L 2), we have the central limit theorem [cf. (Derriennic and Lin in C.R. Acad. Sci. Paris, Sér. I 323:1053–1057, 1996; Gordin and Lifšic in Third Vilnius conference on probability and statistics, vol. 1, pp. 147–148, 1981)]. Without assuming normality of Q, the CLT is implied by the convergence of \(\sum_{n=1}^{\infty}\frac{\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}}{n^{3/2}}\) , in particular by \(\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}=o(\sqrt{n}/\log^{q}n)\) , q>1 by Maxwell and Woodroofe (Ann. Probab. 28:713–724, 2000) and Wu and Woodroofe (Ann. Probab. 32:1674–1690, 2004), respectively. We show that if Q is not normal and f∈(IQ)1/2 L 2, or if the conditions of Maxwell and Woodroofe or of Wu and Woodroofe are weakened to \(\sum_{n=1}^{\infty}c_{n}\frac{\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}}{n^{3/2}}<\infty\) for some sequence c n ↘0, or by \(\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}=O(\sqrt{n}/\log n)\) , the CLT need not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Springer, Berlin (1982)

    MATH  Google Scholar 

  2. Cuny, C.: Pointwise ergodic theorems with rate and application to limit theorems for stationary processes. arXiv:0904.0185 (2009, submitted for publication)

  3. Cuny, C.: Norm convergence of some power-series of operators in L p with applications in ergodic theory (2009, submitted for publication)

  4. Derriennic, Y., Lin, M.: Sur le théorème limite central de Kipnis et Varadhan pour les chaînes réversibles ou normales. C.R. Acad. Sci. Paris, Sér. I 323, 1053–1057 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Derriennic, Y., Lin, M.: The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Relat. Fields 119, 509–528 (2001)

    Article  MathSciNet  Google Scholar 

  6. Gordin, M.I.: A central limit theorem for stationary processes. Sov. Math., Dokl. 10, 1174–1176 (1969)

    MATH  Google Scholar 

  7. Gordin, M.I., Holzmann, H.: The central limit theorem for stationary Markov chains under invariant splittings. Stoch. Dyn. 4, 15–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gordin, M.I., Lifšic, B.A.: Central limit theorem for stationary processes. Sov. Math., Dokl. 19, 392–394 (1978)

    MATH  Google Scholar 

  9. Gordin, M.I., Lifšic, B.A.: A remark about a Markov process with normal transition operator. In: Third Vilnius Conference on Probability and Statistics, vol. 1, pp. 147–148 (1981)

  10. Gordin, M.I., Lifšic, B.A.: The central limit theorem for Markov processes with normal transition operator, and a strong form of the central limit theorem. In: Borodin, A., Ibragimov, I. (Eds.) Limit Theorems for Functionals of Random Walks, Proc. Steklov Inst. Math., vol. 195. Am. Math. Soc., Providence (1994). Sects. IV.7 and IV.8, English Translation Am. Math. Soc., Providence (1995)

    Google Scholar 

  11. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klicnarová, J., Volný, D.: Exactness of a Wu–Woodroofe’s approximation with linear growth of variances. Stoch. Process. Their Appl. 119, 2158–2165 (2009)

    Article  MATH  Google Scholar 

  13. Maxwell, M., Woodroofe, M.: Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28, 713–724 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peligrad, M., Utev, S.: A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33, 798–815 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rosenblatt, M.: Markov Processes: Structure and Asymptotic Behavior. Springer, Berlin (1971)

    MATH  Google Scholar 

  16. Volný, D.: Approximating martingales and the central limit theorem for strictly stationary processes. Stoch. Process. Their Appl. 44, 41–74 (1993)

    Article  MATH  Google Scholar 

  17. Volný, D.: Martingale approximation of non-adapted stochastic processes with nonlinear growth of variance. In: Bertail, P., Doukhan, P., Soulier, P. (Eds.) Dependence in Probability and Statistics. Lecture Notes in Statistics, vol. 187, pp. 141–156. Springer, New York (2006)

    Chapter  Google Scholar 

  18. Wu, W.B., Woodroofe, M.: Martingale approximation for sums of stationary processes. Ann. Probab. 32, 1674–1690 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Volný.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volný, D. Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem. J Theor Probab 23, 888–903 (2010). https://doi.org/10.1007/s10959-010-0275-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0275-x

Keywords

Mathematics Subject Classification (2000)

Navigation