Skip to main content
Log in

Deducing the Density Hales–Jewett Theorem from an Infinitary Removal Lemma

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We offer a new proof of Furstenberg and Katznelson’s density version of the Hales–Jewett Theorem:

Theorem For any δ>0 there is some N 0≥1 such that whenever A⊆[k]N with NN 0 and |A|≥δk N, A contains a combinatorial line, that is, for some I⊆[N] nonempty and w 0∈[k][N]∖I we have

$$A \supseteq \{w:\ w|_{[N]\setminus I} = w_0,\,w|_I = \mathrm{const.}\}.$$

Following Furstenberg and Katznelson, we first show that this result is equivalent to a ‘multiple recurrence’ assertion for a class of probability measures enjoying a certain kind of stationarity. However, we then give a quite different proof of this latter assertion through a reduction to an infinitary removal lemma in the spirit of Tao (J. Anal. Math. 103, 1–45, 2007) (and also its recent re-interpretation in (J. Anal. Math., to appear)). This reduction is based on a structural analysis of these stationary laws closely analogous to the classical representation theorems for various partially exchangeable stochastic processes in the sense of Hoover (Relations on probability spaces and arrays of random variables, 1979), Aldous (in Exchangeability in Probability and Statistics, 165–170, 1982; Lecture Notes in Math. 1117, 1–198, 1985) and Kallenberg (J. Theor. Probab. 5(4), 727–765, 1992). However, the underlying combinatorial arguments used to prove this theorem are rather different from those required to work with exchangeable arrays, and involve crucially an observation that arose during ongoing work by a collaborative team of authors (http://gowers.wordpress.com/) to give a purely finitary proof of the above theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J.: On exchangeability and conditional independence. In: Exchangeability in Probability and Statistics, Rome, 1981, pp. 165–170. North-Holland, Amsterdam (1982)

    Google Scholar 

  2. Aldous, D.J.: Exchangeability and related topics. In: École d’été de probabilités de Saint-Flour, XIII—1983. Lecture Notes in Math., vol. 1117, pp. 1–198. Springer, Berlin (1985)

    Chapter  Google Scholar 

  3. Austin, T.: On exchangeable random variables and the statistics of large graphs and hypergraphs. Probab. Surv. 5, 80–145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Austin, T.: Deducing the multidimensional Szemerédi Theorem from an infinitary removal lemma. J. Anal. Math. 111, 131–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Austin, T.: Pleasant extensions retaining algebraic structure, I and II. Preprints, available online at arxiv:0905.0518 [verb.org] and 0910.0907 [verb.org]

  6. Austin, T.: On the norm convergence of nonconventional ergodic averages. Ergod. Theory Dyn. Syst. 30(2), 321–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergelson, V.: Ergodic Ramsey theory—an update. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of ℤd-Actions: Proceedings of the Warwick Symposium 1993-4, pp. 1–61. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  8. Carlson, T.J., Simpson, S.G.: A dual form of Ramsey’s theorem. Adv. Math. 53(3), 265–290 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furstenberg, H.: Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  11. Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 34, 275–291 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J. Anal. Math. 45, 117–168 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Furstenberg, H., Katznelson, Y.: Idempotents in compact semigroups and Ramsey theory. Isr. J. Math. 68(3), 257–270 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Furstenberg, H., Katznelson, Y.: A density version of the Hales–Jewett theorem. J. Anal. Math. 57, 64–119 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Glasner, E.: Ergodic Theory via Joinings. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  16. Gowers, W.T.: Quasirandomness, counting and regularity for 3-uniform hypergraphs. Comb. Probab. Comput. 15(1–2), 143–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, New York (1990)

    MATH  Google Scholar 

  18. Hoover, D.N.: Relations on probability spaces and arrays of random variables (1979)

  19. Kallenberg, O.: Symmetries on random arrays and set-indexed processes. J. Theor. Probab. 5(4), 727–765 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Probability and Its Applications. Springer, New York (2005)

    MATH  Google Scholar 

  21. Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular k-uniform hypergraphs. Random Struct. Algorithms 28(2), 113–179 (2006)

    Article  MATH  Google Scholar 

  22. Polymath1: A combinatorial approach to Density Hales–Jewett. Online project, viewable at http://gowers.wordpress.com/ (2009)

  23. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Tao, T.: A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma. J. Anal. Math. 103, 1–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, T. Deducing the Density Hales–Jewett Theorem from an Infinitary Removal Lemma. J Theor Probab 24, 615–633 (2011). https://doi.org/10.1007/s10959-011-0373-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0373-4

Keywords

Mathematics Subject Classification (2000)

Navigation