Skip to main content
Log in

Shearer’s Measure and Stochastic Domination of Product Measures

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let G=(V,E) be a locally finite graph. Let \(\vec{p}\in[0,1]^{V}\). We show that Shearer’s measure, introduced in the context of the Lovász Local Lemma, with marginal distribution determined by \(\vec{p}\), exists on G if and only if every Bernoulli random field with the same marginals and dependency graph G dominates stochastically a non-trivial Bernoulli product field. Additionally, we derive a non-trivial uniform lower bound for the parameter vector of the dominated Bernoulli product field. This generalises previous results by Liggett, Schonmann, and Stacey in the homogeneous case, in particular on the k-fuzz of ℤ. Using the connection between Shearer’s measure and a hardcore lattice gas established by Scott and Sokal, we transfer bounds derived from cluster expansions of lattice gas partition functions to the stochastic domination problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andjel, E.D.: Characteristic exponents for two-dimensional bootstrap percolation. Ann. Probab. 21(2), 926–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billingsley, P.: Probability and Measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1995)

    MATH  Google Scholar 

  4. Bissacot, R., Fernández, R., Procacci, A.: On the convergence of cluster expansions for polymer gases. J. Stat. Phys. 139(4), 598–617 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bissacot, R., Fernández, R., Procacci, A., Scoppola, B.: An improvement of the Lovász Local Lemma via cluster expansion. Comb. Probab. Comput. (2011). doi:10.1017/S0963548311000253

    MATH  Google Scholar 

  6. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  7. Dobrushin, R.L.: Perturbation methods of the theory of Gibbsian fields. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1994. Lecture Notes in Math., vol. 1648, pp. 1–66. Springer, Berlin (1996)

    Chapter  Google Scholar 

  8. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), vol. II. Colloquia Mathematica Societatis János Bolyai, vol. 10, pp. 609–627. North-Holland, Amsterdam (1975)

    Google Scholar 

  9. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)

    Article  MATH  Google Scholar 

  10. Fisher, D.C., Solow, A.E.: Dependence polynomials. Discrete Math. 82(3), 251–258 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grimmett, G.: Percolation, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)

    Article  MathSciNet  Google Scholar 

  13. Hoede, C., Li, X.L.: Clique polynomials and independent set polynomials of graphs. Discrete Math. 125(1–3), 219–228 (1994). 13th British Combinatorial Conference (Guildford, 1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics. Springer, Berlin (2005). Reprint of the 1985 original

    MATH  Google Scholar 

  15. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mathieu, P., Temmel, C.: K-independent percolation on trees. Stoch. Process. Appl. (2012). doi:10.1016/j.spa.2011.10.014

  17. Russo, L.: An approximate zero–one law. Z. Wahrscheinlichkeitstheor. Verw. Geb. 61(1), 129–139 (1982)

    Article  MATH  Google Scholar 

  18. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5–6), 1151–1261 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I want to thank Yuval Peres and Rick Durrett for pointing out [15] to me and Pierre Mathieu for listening patiently to my numerous attempts at understanding and solving this problem. This work has been partly done during a series of stays at the LATP, Aix-Marseille Université, financially supported by grants A3-16.M-93/2009-1 and A3-16.M-93/2009-2 from the Land Steiermark and by the Austrian Science Fund (FWF), project W1230-N13. I am also indebted to the anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Temmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temmel, C. Shearer’s Measure and Stochastic Domination of Product Measures. J Theor Probab 27, 22–40 (2014). https://doi.org/10.1007/s10959-012-0423-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0423-6

Keywords

Mathematics Subject Classification

Navigation