Skip to main content
Log in

A Simple Derivation of Mean Field Limits for Quantum Systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We shall present a new strategy for handling mean field limits of quantum mechanical systems. The new method is simple and effective. It is simple, because it translates the idea behind the mean-field description of a many particle quantum system directly into a mathematical algorithm. It is effective because, with less effort, the strategy yields better results than previously achieved. As an instructional example we treat a simple model for the time-dependent Hartree equation which we derive under more general conditions than what has been considered so far. Other mean-field scalings leading, e.g. to the Gross-Pitaevskii equation can also be treated (Pickl in Derivation of the time dependent Gross Pitaevskii equation with external fields, preprint; Pickl in Derivation of the time dependent Gross Pitaevskii equation without positivity condition on the interaction, preprint).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\frac{\partial} {\partial t}}\) :

Partial time derivative

\({\frac{{\rm d}} {{\rm d} t}}\) :

Total time derivative

\({\Delta_j, \nabla_j}\) :

Laplacian and gradient in the coordinate x j

\({\Psi_N^t}\) :

Solution of the Schrödinger equation (1)

\({\varphi^t}\) :

Solution of the Hartree equation (9)

\({\langle\cdot,\cdot\rangle}\) :

Scalar product on \({L^2(\mathbb{R}^3)}\)

\({\langle\langle\cdot,\cdot\rangle\rangle}\) :

Scalar product on \({L^2(\mathbb{R}^{3N})}\)

\({|\varphi\rangle\langle\chi|}\) :

Dirac notation for the operator on \({L^2(\mathbb{R}^3)}\) given by \({|\varphi\rangle\langle\chi|\xi=\langle\chi,\xi\rangle\space\varphi}\)

\({|\varphi(x_j)\rangle\langle\chi(x_j)|}\) :

Dirac notation for the operator on \({L^2(\mathbb{R}^{3N})}\) given by \({|\varphi(x_j)\rangle\langle\chi(x_j)|\Psi=\varphi(x_j)\int \chi^*(x_j) \Psi(x_1,\ldots,x_N) {\rm d}^3 x_j}\)

\(\mathcal{O}_N(1)\) :

Landau’s symbol. Used for functions which tend to zero as \({N \to \infty}\) .

\({p_j^\varphi}\) :

Operator on \({L^2(\mathbb{R}^{3N})}\) given by \({p_j^\varphi=|\varphi(x_j)\rangle\langle\varphi(x_j)|}\)

\({q_j^\varphi}\) :

Operator on \({L^2(\mathbb{R}^{3N})}\) given by \({q_j^\varphi=1-p_j^\varphi}\)

\({\mathcal{A}_k}\) :

Set given by \({\mathcal{A}_k=\{(a_1,a_2,\ldots,a_N): a_j\in\{0,1\}\;;\;\sum_{j=1}^N a_j=k\}}\)

\({P_{N,k}^\varphi}\) :

Operator on \({L^2(\mathbb{R}^{3N})}\) given by \({P_{N,k}^\varphi=\sum_{a\in\mathcal{A}_k}\prod_{j=1}^N(p_{j}^{\varphi})^{1-a_j}(q_{j}^{\varphi})^{a_j}}\)

\({\widehat{n}^{\varphi}}\) :

Operator on \({L^2(\mathbb{R}^{3N})}\) given by \({\widehat{n}^{\varphi}=\sum_{k=0}^Nn(k)P_{N,k}^{\varphi}}\) . (For the example in Section 3 we choose n(k) = k/N)

\({\alpha_N(\Psi_N,\varphi)}\) :

Functional \({L^2(\mathbb{R}^{3N}) \times L^2(\mathbb{R}^{3}) \to \mathbb{R}^+}\) given by \({\alpha_N(\Psi_N,\varphi)=\langle\langle\Psi_N,\widehat{n}^{\varphi}\Psi_N\rangle\rangle}\)

References

  1. Adami R., Golse F., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1193–1220 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Chen, T., Pavlovic, N.: Recent results on the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Math. Model Nat. Phenom. (to appear)

  3. Elgart A., Schlein B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation with Coulomb potential. Adv. Theor. Math. Phys 5, 1023–1059 (2001)

    Google Scholar 

  5. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii Hierarchy for the Dynamics of Bose-Einstein Condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MATH  Google Scholar 

  6. Erdös L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation with Coulomb potential. Adv. Theor. Math. Phys 5, 1169–1205 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Commun. Math. Phys. 228(3), 1023–1059 (2009)

    Article  ADS  Google Scholar 

  9. Ginibre J., Ozawa T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension \({n \geq 2}\) . Commun. Math. Phys. 151(3), 619–645 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  11. Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169–185 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. (to appear)

  13. Michelangeli A.: Equivalent definitions of asymptotic 100% BEC. Nuovo Cimento Sec. B 123, 81–192 (2008)

    Google Scholar 

  14. Pickl, P.: Derivation of the time dependent Gross Pitaevskii equation with external fields (preprint)

  15. Pickl, P.: Derivation of the time dependent Gross Pitaevskii equation without positivity condition on the interaction (preprint)

  16. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean-field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53(3), 569–615 (1980)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pickl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickl, P. A Simple Derivation of Mean Field Limits for Quantum Systems. Lett Math Phys 97, 151–164 (2011). https://doi.org/10.1007/s11005-011-0470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0470-4

Mathematics Subject Classification (2000)

Keywords

Navigation