Skip to main content
Log in

Calculating Deposit Formation in the Pipelining of Waxy Crude Oils

  • Original Paper
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Wax deposition from a waxy crude oil is modelled in turbulent flow in a pipeline. Molecular diffusion in a thin boundary layer near the pipe wall is taken as the only mechanism responsible for deposition. The model takes into account the ablation, which is a flow-related phenomenon that limits the growth of the deposit. The effect of desaturation of the oil is analyzed as well. Two field cases are presented in which the numerical implementation of the model is in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r :

Radial coordinate

z :

Longitudinal coordinate

L :

Length of the pipeline

R :

Pipe radius

R T :

Radius of the region where temperature is independent from r

R m :

Radius of the turbulent core

\({\nu}\) :

Radius of the deposition front

\({\sigma_{\rm d}}\) :

Thickness of the deposit

\({\sigma_{\rm T}}\) :

Thermal boundary layer thickness

\({\sigma_{\rm m}}\) :

Momentum boundary layer thickness

\({\theta_{\rm T}}\) :

Ratio \({R_{\rm T}/\nu}\)

\({\theta_{\rm m}}\) :

Ratio \({R_{\rm m}/\nu}\)

\({\varepsilon_{\rm T}}\) :

\({1-\theta_{\rm T}}\)

\({\varepsilon_{\rm m}}\) :

\({1-\theta_{\rm m}}\)

V :

Velocity of the turbulent core

η:

Viscosity

Q :

Volumetric flow rate

ΔP :

Pressure gradient

\({\tau}\) :

Shear stress acting on the turbulent core

\({\rho}\) :

Density

f :

Friction factor

χ:

Surface roughness

Re :

Reynolds number

T :

Temperature in the thermal boundary layer

T c :

Temperature in the region 0 ≤ r ≤ R T

T e :

Temperature of the surroundings

T w :

Temperature at the pipe wall

T o :

Temperature of the oil at the inlet

T cloud :

Cloud point

c :

Specific heat

k :

Heat conductivity

h :

Heat transfer coefficient

α:

\({k/(\rho c)}\)

μ:

k/(h R)

z f :

Longitudinal coordinate after which deposition starts

z des :

Longitudinal coordinate after which the turbulent core becomes unsaturated

z e :

Longitudinal coordinate after which deposition ceases

z s :

Longitudinal coordinate after which deposition ceases because of desaturation

M tot :

Total mass of deposit (oil included)

M exp :

Mass of recovered material

D :

Wax diffusivity

C s(T):

Solubility

G :

Segregated wax concentration

c :

Dissolved wax concentration

\({\beta}\) :

Derivative of solubility w.r.t. temperature

\({\psi}\) :

Solid wax fraction of the deposit

A :

Ablation coefficient

\({\overrightarrow{j}_{\rm wax}}\) :

Dissolved wax mass flux

\({\overrightarrow{j}_{\rm dep}}\) :

Total mass flux

\({j_{\rm abl}}\) :

Ablation rate per unit surface

\({\overrightarrow{e}_{\rm r}}\) :

Unit radial vector

\({\overrightarrow{e}_{\rm z}}\) :

Unit longitudinal vector

\({\overrightarrow{n}}\) :

Unit normal to the deposition front

\({t_{\rm a}}\) :

Characteristic consolidation time

\({t_{\rm o}}\) :

Characteristic deposition time.

References

  1. Azevedo LFA, Teixeira AM (2003) A critical review of the modeling of wax deposition mechanisms. Petrol Sci Technol 21(3 and 4):393–408

    Article  Google Scholar 

  2. Bern PA, Winthers VR, Cairns J (1980) Wax deposition in pipelines. European Offshore Petroleum Conference & Exhibition, London, pp 21–24.

  3. Borghi GB, Correra S, Merlini M., Carniani C (2003) Prediction and scaleup of waxy oil restart behavior. Soci Petrol Engi SPE 80259:1–5

    Google Scholar 

  4. Burger ED, Perkins TK, Striegler JH (1981) Studies of wax deposition in the Trans-Alaska pipeline. J Petrol Technol 33:1075–1086

    Google Scholar 

  5. Correra S, Andrei M, Carniani C (2005) Wax diffusivity: is it a physical property or a pivotable parameter?. Petro Sc & Technol, 21(9):1539–1554

    Article  Google Scholar 

  6. Correra S, Fasano A, Fusi L, Primicerio M, Rosso F (2006) Wax diffusivity under given thermal gradient: a mathematical model, to appear on ZAMM, DOI:2005/0293

  7. Correra S, Fasano A, Fusi L, Primicerio M (2006) Modelling wax diffusion in crude oils: the cold finger device, to appear on J Appl Mathe Model, DOI: 10.1016

  8. Coutinho JAP, Edmonds B, Moorwood T, Szczepanski R, Zhang X (2006) Reliable wax predictions for flow assurance. Energy Fuels 20:1081–1088

    Article  Google Scholar 

  9. Creek JL, Lund HJ, Brill JP, Volk M (1999) Wax deposition in a single phase flow. Fluid Phase Equilibria, 158(1):801–811

    Article  Google Scholar 

  10. Fasano A, Fusi L, Correra S (2004) Mathematical Models for Waxy Crude Oils. Meccanica 39: 441–482

    Article  MATH  Google Scholar 

  11. Fasano A, Primicerio M (2005) Temperature driven mass transport in concentrated saturated solutions. Prog Nonlinear Diff Equ Their Appl 61:91–108

    Article  MathSciNet  Google Scholar 

  12. Fasano A, Primicero M (2003) Heat and Mass transfer in non-isothermal partially saturated solutions. New Trends in Mathematical Physics. Proceedings of the international meeting Naples, January 24–25, pp 34–44

  13. Hammami A, Ratulowski J, Coutinho JAP, (2003) Cloud points and can we measure or model them. Petrol Sci Technol 21(3 and 4):345–358

    Article  Google Scholar 

  14. Hansen JH, Fredenslund Aa, Pedersen KS, Rnningsen HP (2004) A thermodynamic model for predicting wax formation in crude oils. AIChE J 34(12):1937–1942

    Article  Google Scholar 

  15. Hsu JJC, Santamaria MM, Brubaker JP (1994) Wax deposition of waxy live crudes under turbulent flow conditions. SPE 28480, SPE Annual technical conference and exhibition. New Orleans, LA, September

  16. Kays WM, Crawford ME (1980) Convective Heat and Mass Transfer. McGraw Hill, New York

    Google Scholar 

  17. Lira-Galeana C, Firoozabadi A, Prausnitz JM (1996) Thermodynamics of wax precipitation in petroleum mixtures. AIChE J 42(1):239–248

    Article  Google Scholar 

  18. Nazar SAR, Dabir B, Vaziri H, Islam MR (2001) Experimental and mathematical modeling of wax deposition and propagation in pipes transporting crude oil. SPE 67328: 239–248

    Google Scholar 

  19. Pan H, Firoozabadi A, Fotland P (1997) Pressure and composition effect on wax precipitation: experimental data and model results. SPE Prod Facili J (Nov) 250–258

  20. Perry RH, Green DW, Maloney JO (1999) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  21. Shock DA, Sudbury JD, Crockett JJ (1955) Studies on the mechanism of paraffin deposition and its control. J petrol Technol 7(9):23–30

    Google Scholar 

  22. Singh P, Venkatesan R, Fogler S (2000) Formation and aging of incipient thin film wax-oil gels. AIChE J 46(5): 1059–1074

    Article  Google Scholar 

  23. Singh P, Venkatesan R, Fogler S (2001) Morphological evolution of thick wax deposits during aging. AIChE J 47(1):6–18

    Article  Google Scholar 

  24. Svendsen JA (1993) Mathematical modeling of wax deposition in oil pipeline system. AIChE J 39(8): 1377–1388

    Article  Google Scholar 

  25. Venkatesan R (2004) The deposit and rheology of organic gels. P.h.D. Thesis, University of Michigan

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fasano.

Additional information

Work performed in the framework of the cooperation between EniTecnologie (Milan) and I2T3 (Florence).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correra, S., Fasano, A., Fusi, L. et al. Calculating Deposit Formation in the Pipelining of Waxy Crude Oils. Meccanica 42, 149–165 (2007). https://doi.org/10.1007/s11012-006-9028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-006-9028-4

Keywords

Navigation