Skip to main content
Log in

Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow of an incompressible, viscous and electrically conducting fluid over a stretching vertical flat plate is theoretically investigated with Hall effects taken into account. The governing equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of the magnetic parameter, the Hall parameter and the buoyancy parameter on the velocity profiles, the cross flow velocity profiles and the temperature profiles are presented graphically and discussed. Investigated results indicate that the Hall effect on the temperature is small, and the magnetic field and Hall currents produce opposite effects on the shear stress and the heat transfer at the stretching surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

a,c :

constants

B 0 :

the strength of the imposed magnetic field

C fx :

skin friction coefficient in x-direction

C fz :

skin friction coefficient in z-direction

e :

electric charge (C)

f :

dimensionless stream function

g :

acceleration due to gravity (m s−2)

Gr x :

local Grashof number

H 0 :

external magnetic field

m :

Hall parameter

m e :

the mass of an electron (kg)

M :

magnetic parameter

n e :

electron number density

Pr :

Prandtl number

Re x :

local Reynolds number

T :

fluid temperature (K)

T e :

electron collision time (s)

T w :

surface temperature (K)

T :

ambient temperature (K)

u,v,w :

velocity components along the x, y and z directions, respectively (m s−1)

u w (x):

velocity of the stretching plate (m s−1)

x,y,z :

Cartesian coordinates along the stretching surface, normal to it, and transverse to the xy plane, respectively (m)

α :

thermal diffusivity (m2 s−1)

β :

thermal expansion coefficient (1/K)

λ :

constant buoyancy or mixed convection parameter

θ :

dimensionless temperature

ν:

kinematic viscosity (m2 s−1)

μ :

dynamic viscosity (kg m−1 s−1)

μ e :

magnetic permeability (H m−1)

ρ :

fluid density (kg m−3)

τ w :

wall shear stress (Pa)

w :

condition at the surface

∞:

ambient condition

References

  1. Banks WHH, Zaturska MB (1986) Eigensolutions in boundary-layer flow adjacent to a stretching wall. IMA J Appl Math 36:263–273

    Article  MathSciNet  MATH  Google Scholar 

  2. Sparrow EM, Abraham JP (2005) Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. Int J Heat Mass Transf 48:3047–3056

    Article  MATH  Google Scholar 

  3. Abraham JP, Sparrow EM (2005) Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface. Int J Heat Fluid Flow 26:289–295

    Article  Google Scholar 

  4. Lakshmisha KN, Venkateswaran S, Nath G (1988) Three-dimensional unsteady flow with heat and mass transfer over a continuous stretching surface. J Heat Transf 110:590–595

    Article  Google Scholar 

  5. Kumari M, Takhar HS, Nath G (1990) MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Wärme- Stoffübertrag 25:331–336

    Article  ADS  Google Scholar 

  6. Taylor GI (1959) The dynamics of thin sheets of fluid. Proc R Soc A 253:289–295

    Article  ADS  MATH  Google Scholar 

  7. Stuart JT (1966) Double boundary layers in oscillatory viscous flow. J Fluid Mech 24:673–687

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Moffatt HK (1982) High frequency excitation of liquid metal systems. In: IUTAM symposium: metallurgical applications of magnetohyrodynamics, Cambridge

    Google Scholar 

  9. Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28

    Article  Google Scholar 

  10. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  11. Sato H (1961) The Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field. J Phys Soc Jpn 16:1427–1433

    Article  ADS  MATH  Google Scholar 

  12. Sutton GW, Sherman A (1965) Engineering magnetohydrodynamics. McGraw-Hill, New York

    Google Scholar 

  13. Pop I (1971) The effect of Hall currents on hydromagnetic flow near an accelerated plate. J Math Phys Sci 5:375–385

    MATH  Google Scholar 

  14. Raptis A, Ram PC (1984) Effects of Hall current and rotation. Astrophys Space Sci 106:257–264

    Article  ADS  MATH  Google Scholar 

  15. Hossain MA, Rashid RIMA (1987) Hall effect on hydromagnetic free convection flow along a porous flat plate with mass transfer. J Phys Soc Jpn 56:97–104

    Article  ADS  Google Scholar 

  16. Watanabe T, Pop I (1995) Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate. Acta Mech 108:35–47

    Article  MATH  Google Scholar 

  17. Gupta AS, Takhar HS (2003) Hall effects on MHD flow and heat transfer over a stretching surface. J Appl Mech Eng 8(2):219–232

    MATH  Google Scholar 

  18. Pop I, Ghosh SK, Nandi DK (2001) Effects of the Hall current on free and forced convection flows in a rotating channel in the presence of an inclined magnetic field. Magnetohydrodynamics 37(4):348–359

    ADS  Google Scholar 

  19. Ghosh SK, Pop I (2003) Hall effects on unsteady hydromagnetic flow in a rotating system with oscillating pressure gradient. Int J Appl Mech Eng 8(1):43–56

    MATH  Google Scholar 

  20. Ezzat M, Zakaria M, Moursy M (2004) Magnetohydrodynamic boundary layer flow past a stretching plate and heat transfer. J Appl Math 1:9–21

    Article  MathSciNet  MATH  Google Scholar 

  21. Zakaria M (2004) Magnetohydrodynamic viscoelastic boundary layer flow past a stretching plate and heat transfer. Appl Math Comput 155:165–177

    Article  MathSciNet  MATH  Google Scholar 

  22. Yih KA (1999) Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface. Int Commum Heat Mass Transf 26:95–104

    Article  Google Scholar 

  23. Abo-Eldahab EM (2005) Hydromagnetic three-dimensional flow over a stretching surface with heat and mass transfer. Heat Mass Transf 41:734–743

    Article  ADS  Google Scholar 

  24. Ishak A, Nazar R, Pop I (2006) Magnetohydrodynamic stagnation-point flow towards a stretching vertical sheet. Magnetohydrodynamics 42(1):77–90

    ADS  MATH  Google Scholar 

  25. Ishak A, Nazar R, Pop I (2007) Magnetohydrodynamic stagnation-point flow towards a stretching vertical sheet in a micropolar fluid. Magnetohydrodynamics 43(1):83–97

    ADS  MathSciNet  Google Scholar 

  26. Hossain MA (1986) Effect of Hall current on unsteady hydromagnetic free convection flow near an infinite vertical porous plate. J Phys Soc Jpn 55(7):2183–2190

    Article  ADS  Google Scholar 

  27. Hossain MA, Mahammad K (1988) Effect of Hall current on hydromagnetic free convection flow near an accelerated porous plate. Jpn J Appl Phys 27(8):1531–1535

    Article  ADS  Google Scholar 

  28. Ram PC (1988) Hall effect on free convective flow and mass transfer through a porous medium. Wärme- Stoffübertrag 22:223–225

    Article  ADS  Google Scholar 

  29. Megahed AA, Komy SR, Afify AA (2003) Similarity analysis in magnetohydrodynamics: Hall effects on free convection flow and mass transfer past a semi-infinite vertical flat plate. Int J Non-Linear Mech 38:513–520

    Article  MATH  Google Scholar 

  30. Abo-Eldahab EM, Abd El-Aziz M, Salem AM, Jaber KK (2007) Hall currenteffect on MHD mixed convection flow from an inclined continuously stretching surface with blowing/suction and internal heat generation/absorption. Appl Math Model 31:1829–1846

    Article  MATH  Google Scholar 

  31. Salem AM, Abd El-Aziz M (2008) Effect of Hall currents and chemical reaction on a hydromagnetic flow of a stretching vertical surface with internal heat generation/absorption. Appl Math Model 32(7):1236–1254

    Article  MathSciNet  MATH  Google Scholar 

  32. Ghosh SK, Anwar Bég O, Narahari M (2009) Hall effects on MHD flow in a rotating system with heat transfer characteristics. Meccanica 44:741–765

    Article  MathSciNet  MATH  Google Scholar 

  33. Abd El-Aziz M (2010) Flow and heat transfer over an unsteady stretching surface with Hall effect. Meccanica 45:97–109

    Article  MathSciNet  MATH  Google Scholar 

  34. Cowling TG (1957) Magnetohydrodynamics. Interscience, New York

    MATH  Google Scholar 

  35. Cebeci T, Bradshaw P (1988) Physical and computational aspects of convective heat transfer. Springer, New York

    Book  MATH  Google Scholar 

  36. Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf 44:921–927

    Article  ADS  Google Scholar 

  37. Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J Heat Transf 107:248–250

    Article  Google Scholar 

  38. Ali ME (1994) Heat transfer characteristics of a continuous stretching surface. Wärme- Stoffübertr 29:227–234

    Article  ADS  Google Scholar 

  39. Schlichting H, Gersten K (2000) Boundary layer theory. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, F.M., Nazar, R., Arifin, N.M. et al. Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica 46, 1103–1112 (2011). https://doi.org/10.1007/s11012-010-9371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9371-3

Keywords

Navigation