Skip to main content
Log in

Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians

Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We show how one can construct conservation laws of Euler-Lagrange-type equations via Noether-type symmetry operators associated with what we term partial Lagrangians. This is even in the case when a system does not directly have a usual Lagrangian, e.g. scalar evolution equations. These Noether-type symmetry operators do not form a Lie algebra in general. We specify the conditions under which they do form an algebra. Furthermore, the conditions under which they are symmetries of the Euler-Lagrange-type equations are derived. Examples are given including those that admit a standard Lagrangian such as the Maxwellian tail equation, and equations that do not such as the heat and nonlinear heat equations. We also obtain new conservation laws from Noether-type symmetry operators for a class of nonlinear heat equations in more than two independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ovsiannikov, L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982.

    Google Scholar 

  2. Ibragimov, N. H., Transformation Groups Applied to Mathematical Physics, Nauka, Moscow, 1983 (English translation by D Reidel, Dordrecht, 1985).

  3. Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.

    Google Scholar 

  4. Olver, P. J., Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.

    Google Scholar 

  5. Noether, E., ‘Invariante variationsprobleme’, Nachr. König. Gesell. Wissen., Göttingen, Math.-Phys. Kl. Heft 2, 1918, 235–257. (English translation in Transport Theory and Statistical Physics 1(3), 1971, 186–207.)

  6. Bessel-Hagen, E., ‘Über die Erhaltungssätze der Elektrodynamik’, Mathematische Annalen 84, 1921, 258–276.

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson, I. M. and Duchamp, T. E., ‘Variational principles for second-order quasi-linear scalar equations’, Journal of Differential Equations 51, 1984, 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  8. Ibragimov, N. H., CRC Handbook of Lie Group Analysis of Differential Equations Vol 1, Ibragimov, N.H. ed., CRC Press, Boca Raton, Florida, 1994.

  9. Khalique, C. M. and Mahomed, F. M., ‘Conservation laws for equations related to soil water equations’, Mathematical Problems in Engineering 26(1), 2005, 141–150.

    Article  MathSciNet  Google Scholar 

  10. Steudel, H., ‘Uber die Zuordnung zwischen Invarianzeigenschaften und Erhal-tungssätzen’, Zeit Naturforsch 17A, 1962, 129–132.

    MathSciNet  Google Scholar 

  11. Anco, S. C. and Bluman, G. W., ‘Direct construction method for conservation laws of partial differential equations, Part II: General treatment’, European Journal of Applied Mathematics 9, 2002, 567–585.

    Article  MathSciNet  Google Scholar 

  12. Wolf, Thomas, ‘A comparison of four approaches to the calculation of conservation laws’, European Journal of Applied Mathematics 13, 2002, 129–152.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ibragimov, N. H. and Kolsrud, T., ‘Lagrangian approach to evolution equations: Symmetries and conservation laws’, Nonlinear Dynamics 36(1), 2004, 29–40.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kara, A. H. and Mahomed, F. M., ‘Relationship between symmetries and conservation laws’, Int. J. of Theoretical. Phys. 39, 2000, 23–40.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kara, A. H., Mahomed, F. M. and Ünal G., 'Approximate symmetries and conservation laws with applications', Int. J. Theoretical Phys. 38, 1999, 2389–2399.

    Article  MATH  Google Scholar 

  16. Kara, A. H. and Mahomed, F. M., ‘A basis of conservation laws for partial differential equations’, J. of Nonlinear Math. Phys. 9, 2002, 60–72.

    MathSciNet  Google Scholar 

  17. Vinogradov, A. M., ‘Local symmetries and conservation laws’, Acta Applied Mathematics 2, 1984, 21–78.

    Article  MATH  Google Scholar 

  18. Ibragimov, N. H., Kara, A. H. and Mahomed, F. M., ‘Lie-Bäcklund and noether symmetries with applications’, Nonlinear Dynamics 15, 1998, 115–136.

    Article  MATH  MathSciNet  Google Scholar 

  19. Steinberg, S. and Wolf, K. B., ‘Symmetry, conserved quantities and moments in diffusive equations’, Journal of Mathematical Analysis and Applications 80, 1981, 36–45.

    Article  MATH  MathSciNet  Google Scholar 

  20. Euler, N., Leach, P. G. L., Mahomed, F. M., and Steeb, W.-H., ‘Symmetry vector fields and similarity solutions of nonlinear field equation describing the relaxation to a Maxwell distribution’, International Journal of Theoretical Physics 27, 1988, 717–723.

    Article  MATH  MathSciNet  Google Scholar 

  21. Mahomed, F. M., Kara, A. H., and Leach, P. G. L., ‘Lie and Noether counting theorems for one-dimensional systems’, Journal of Mathematical Analysis and Applications 178(1), 1993, 116–129.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Mahomed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kara, A.H., Mahomed, F.M. Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians. Nonlinear Dyn 45, 367–383 (2006). https://doi.org/10.1007/s11071-005-9013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-005-9013-9

Key words

Navigation