Skip to main content
Log in

Observer-based impulsive chaotic synchronization of discrete-time switched systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates impulsive chaotic synchronization of discrete-time switched systems with state-dependent switching strategy. The parameter-dependent Lyapunov function (PDLF) technique is used to establish stability criteria for a class of switched systems consisting of both stable and unstable subsystems. With these criteria, sufficient conditions are given to achieve observer-based impulsive chaotic synchronization. Examples are presented to illustrate the criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  2. Han, S.K., Kurrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75(17), 3190–3193 (1995)

    Article  Google Scholar 

  3. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399(6734), 354–358 (1999)

    Article  Google Scholar 

  4. Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 2(3), 709–713 (1992)

    Article  MATH  Google Scholar 

  5. Khadra, A., Liu, X.Z., Shen, X.M.: Application of impulsive synchronization to communication security. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(3), 341–351 (2003)

    Article  MathSciNet  Google Scholar 

  6. Khadra, A., Liu, X.Z., Shen, X.M.: Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9), 1491–1502 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  8. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heagy, J.F., Carroll, T.L., Pecora, L.M.: Synchronous chaos in coupled oscillator systems. Phys. Rev. E 50(3), 1874–1885 (1994)

    Article  Google Scholar 

  10. Agiza, H.N., Matouk, A.E.: Adaptive synchronization of Chua circuits with fully unknown parameters. Chaos Solitons Fractals 28(1), 219–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Park, J.H., Lee, S.M., Kwon, O.M.: Adaptive synchronization of genesio–tesi chaotic system via a novel feedback control. Phys. Lett. A 371(4), 263–270 (2007)

    Article  MathSciNet  Google Scholar 

  12. Yassen, M.T.: Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos Solitons Fractals 26(3), 913–920 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, H.B., Liao, X.F., Yu, J.B.: Fuzzy modeling and synchronization of hyperchaotic systems. Chaos Solitons Fractals 26(3), 835–843 (2005)

    Article  MATH  Google Scholar 

  14. Morguo, O., Solak, E.: Observer based synchronization of chaotic systems. Phys. Rev. E 54(5), 4803–4811 (1996)

    Article  Google Scholar 

  15. Chen, M.Y., Zhou, D.H., Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos Solitons Fractals 24(4), 1025–1030 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, S.H., Zhang, Q.J., Xie, J., Wang, C.P.: A stable-manifold-based method for chaos control and synchronization. Chaos Solitons Fractals 20(5), 947–954 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(10), 976–988 (1997)

    Article  MathSciNet  Google Scholar 

  18. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switchedand hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lakshmikantham, V., Liu, X.Z.: Impulsive hybrid systems and stability theory. Dyn. Syst. Appl. 7(1), 1–10 (1998)

    MATH  MathSciNet  Google Scholar 

  20. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2003)

    MATH  Google Scholar 

  21. Lu, J.H., Zhou, T.S., Chen, G.R., Yang, X.S.: Generating chaos with a switching piecewise-linear controller. Chaos: Interdiscip. J. Nonlinear Sci. 12(2), 344–349 (2002)

    Article  Google Scholar 

  22. Liu, X.Z., Teo, K.L., Zhang, H.T., Chen, G.R.: Switching control of linear systems for generating chaos. Chaos Solitons Fractals 30(3), 725–733 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Millerioux, G., Daafouz, J.: An observer-based approach for input-independent global chaos synchronization of discrete-time switched systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(10), 1270–1279 (2003)

    Article  MathSciNet  Google Scholar 

  24. Liu, X.Z.: Impulsive stabilization of nonlinear systems. IMA J. Math. Control Inf. 10(1), 11–19 (1993)

    Article  MATH  Google Scholar 

  25. Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst. Control Lett. 43(5), 355–359 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhi Liu.

Additional information

Research supported by NSERC CANADA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Liu, X. Observer-based impulsive chaotic synchronization of discrete-time switched systems. Nonlinear Dyn 62, 781–789 (2010). https://doi.org/10.1007/s11071-010-9762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9762-y

Keywords

Navigation