Skip to main content
Log in

Effect of delay on a predator–prey model with parasitic infection

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the paper an eco-epidemic system with delay and parasitic infection in the prey is investigated. The conditions for asymptotic stability of steady states are derived and the length of the delay preserving the stability is also estimated. Further, the criterion for existence of Hopf-type small amplitude periodic oscillations of the predator and prey biomass is derived. Numerical results indicate that the delay does not affect the stability of the system in the process but makes all populations oscillate more intensively. In addition, the results show that the recovery makes the levels of the infected prey and the predator become lower but makes the sound prey higher in limit time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hudson, P.J., Dobson, A.P., Lafferty, K.D.: Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006)

    Article  Google Scholar 

  2. Grenfell, B.T., Dobson, A.P.: Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, H., Dobson, A.P.: The Ecology of Wildlife Diseases. Oxford University Press, Oxford (2001)

    Google Scholar 

  4. Holt, R.D., Dobson, A.P., Begon, M., Bowers, R.G., Schauber, E.M.: Parasite establishment in host communities. Ecol. Lett. 6, 837–842 (2003)

    Article  Google Scholar 

  5. Sait, S.M., Liu, W.C., Thompson, D.J., Godfrey, H.C.J., Begon, M.: Invasion sequence affects predator–prey dynamics in a multi-species interaction. Nature 405, 448–450 (2000)

    Article  Google Scholar 

  6. Mukherjee, D.: A delayed prey–predator system with parasitic infection. Biosystems 85, 158–164 (2006)

    Article  Google Scholar 

  7. Frank, M.H., Kirsten, S.: Disease-induced stabilization of predator–prey oscillations. J. Theor. Biol. 255, 299–306 (2008)

    Article  Google Scholar 

  8. Martcheva, M.: Evolutionary consequences of predation for pathogens in prey. Bull. Math. Biol. 71, 819–844 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Xiao, N., Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Holt, R.D., Roy, M.: Predation can increase the prevalence of infectious disease. Am. Nat. 169, 690–699 (2007)

    Article  Google Scholar 

  12. Han, L., Ma, Z., Hethcote, H.W.: Four predator prey models with infectious diseases. Math. Comput. Model. 34, 849–858 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Temple, S.A.: Do predators always capture substandard individuals disproportionately from prey populations? Ecology 68, 669–674 (1987)

    Article  Google Scholar 

  14. Holmes, J.C., Bethel, W.M.: Modification of intermediate host behavior by parasites. In: E.V. Canning, C.A. Wright (Eds.) Zool. J. Linn. Soc. 51(Suppl. I), 123–149 (1972)

  15. Hudson, P.J., Dobson, A.P., Newborn, D.: Do parasites make prey more vulnerable to predation? Red grouse and parasites. J. Anim. Ecol. 61, 681–692 (1992)

    Article  Google Scholar 

  16. Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D., Dobson, A.P.: Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 797–802 (2003)

    Article  Google Scholar 

  17. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  18. Driessche, P., Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Venturino, E.: Epidemics in predator–prey models: disease in the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (Eds.) Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics, vol. 1, pp. 381–393. Wuerz Publishing, Winnipeg (1995)

    Google Scholar 

  20. Ji, X., Pei, Y., Li, C.: Two patterns of recruitment in an epidemic model with difference in immunity of individuals. Nonlinear Anal., Real World Appl. 11, 2078–2090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, X., Wang, J., Ghosh, M.: Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination. Appl. Math. Model. 34(2), 437–450 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, Y., Cui, J.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14, 2353–2365 (2009)

    Article  MathSciNet  Google Scholar 

  23. Chen, J., Liu, X.: Stability of an seis epidemic model with constant recruitment and a varying total population size. Appl. Math. J. Chin. Univ. Ser. B 21(1), 1–8 (2006)

    MATH  Google Scholar 

  24. Li, C., Pei, Y., Liu, Z.: A prey–predator system with parasitic infection and recovery. J. Biomath. 25(1), 1–5 (2010)

    Google Scholar 

  25. Hatcher, M.J., Dick, J.T.A., Dunn, A.M.: How parasites affect interactions between competitors and predators. Ecol. Lett. 9, 1253–1271 (2006)

    Article  Google Scholar 

  26. Castro, F.D., Bolker, B.M.: Parasite establishment and host extinction in model communities. OIKOS 111, 501–513 (2005)

    Article  Google Scholar 

  27. Peterson, R.O., Page, R.E.: Wolf density as a predictor of predation rate. Swed. Wildlife Res. (Suppl.) 1, 771–773 (1987)

    Google Scholar 

  28. Freedman, H.I., Erbe, L.H., Rao, V.S.H.: Three species food chain model with mutual interference and time delays. Math. Biosci. 80, 57–80 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf-Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Yongzhen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongzhen, P., Shuping, L. & Changguo, L. Effect of delay on a predator–prey model with parasitic infection. Nonlinear Dyn 63, 311–321 (2011). https://doi.org/10.1007/s11071-010-9805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9805-4

Keywords

Navigation