Skip to main content
Log in

Nonlinear dynamic analysis and sliding mode control for a gyroscope system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper employs differential transformation (DT) method to analyze and control the dynamic behavior of a gyroscope system. The analytical results reveal a complex dynamic behavior comprising periodic, subharmonic, quasiperiodic, and chaotic responses of the center of gravity. Furthermore, the results reveal the changes which take place in the dynamic behavior of the gyroscope system as the external force is increased. The current analytical results by DT method are found to be in good agreement with those of Runge–Kutta (RK) method. In order to suppress the chaotic behavior in gyroscope system, the sliding mode controller (SMC) is used and guaranteed the stability of the system from chaotic motion to periodic motion. Numerical simulations are shown to verify the results. The proposed DT method and controlling scheme provide an effective means of gaining insights into the nonlinear dynamics and controlling of gyroscope systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H.K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J. Sound Vib. 255, 719–740 (2002)

    Article  Google Scholar 

  2. Dooren, R.V.: Comments on chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J. Sound Vib. 268, 632–634 (2003)

    Article  Google Scholar 

  3. Ge, Z.M., Chen, H.K.: Bifurcations and chaos in a rate gyro with harmonic excitation. J. Sound Vib. 194, 107–117 (1996)

    Article  MathSciNet  Google Scholar 

  4. Tong, X., Mrad, N.: Chaotic motion of a symmetric gyro subjected to a harmonic base excitation. ASME J. Appl. Mech. 68, 681 (2001)

    Article  MATH  Google Scholar 

  5. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boccaletti, S., Grebogi, C., Lai, Y.C., Maricini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chen, C.L., Yau, H.T., Chao, C.P.: Design of extended backstepping sliding mode controller for uncertain chaotic systems. Int. J. Nonlinear Sci. Numer. 8, 137–145 (2007)

    Article  Google Scholar 

  8. Chen, C.L., Lin, W.Y.: Sliding mode control for non-linear systems with global invariance. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 211, 75–82 (1997)

    Article  Google Scholar 

  9. Yau, H.T., Chen, C.L.: Chaos control of Lorenz systems using adaptive controller with input saturation. Chaos Solitons Fractals 34, 1567–1574 (2007)

    Article  Google Scholar 

  10. Peng, C.C., Chen, C.L.: Robust chaotic control of Lorenz system by backstepping design. Chaos Solitons Fractals 37, 598–608 (2008)

    Article  MATH  Google Scholar 

  11. Lei, Y., Xu, W., Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control. Phys. Lett. A 343, 153–158 (2005)

    Article  MATH  Google Scholar 

  12. Ge, Z.M., Lee, J.K.: Chaos synchronization and parameter identification for gyroscope system. Appl. Math. Comput. 163, 667–682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yau, H.T.: Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech. Syst. Signal Process. 22, 408–418 (2008)

    Article  Google Scholar 

  14. Wang, C.C., Yau, H.T.: Chaotic analysis and control of microcandilevers with PD feedback using differential transformation method. Int. J. Nonlinear Sci. Numer. 10, 425–444 (2009)

    Article  Google Scholar 

  15. Wang, C.C.: Application of a hybrid method to the nonlinear dynamic analysis of a flexible rotor supported by a spherical gas-lubricated bearing system. Nonlinear Anal. Theory Method Appl. 70, 2035–2053 (2009)

    Article  MATH  Google Scholar 

  16. Wang, C.C., Yau, H.T.: Analysis of nonlinear dynamic behavior of atomic force microscope using differential transformation method. ACTA Mech. 198, 87–98 (2008)

    Article  MATH  Google Scholar 

  17. Wang, C.C.: Application of a hybrid numerical method to the nonlinear dynamic analysis of a micro gas bearing system. Nonlinear Dyn. 59, 695–710 (2010)

    Article  MATH  Google Scholar 

  18. Wang, C.C., Pai, N.S., Yau, H.T.: Chaos control in AFM system using sliding mode control by backstepping design. Commun. Nonlinear Sci. Numer. Simul. 15, 741–751 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Chi Wang.

Additional information

NSC PROJECT: NSC 99-2221-E-269-008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CC., Yau, HT. Nonlinear dynamic analysis and sliding mode control for a gyroscope system. Nonlinear Dyn 66, 53–65 (2011). https://doi.org/10.1007/s11071-010-9910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9910-4

Keywords

Navigation