Skip to main content
Log in

Finite-time stability of multi-agent system in disturbed environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Finite-time stability problem of multi-agent system in disturbed environment is a question with practical significance. In this paper, a multi-agent system moving with obstacle avoidance is studied. The multi-agent system is expected to form a desired formation in finite time. Finite-time control law for continuous multi-agent system is proposed, which ensures that all the agents can pass the obstacles on their way, and the relative position between two agents reaches a constant value in finite time. Based on some notations and proposition given in the paper, the stability analysis is presented. Finally some simulations are presented to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46, 231–236 (2002)

    Article  MATH  Google Scholar 

  2. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46, 305–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wolfe, J.D., Chichka, D.F., Speyer, J.L.: Decentralized controllers for unmanned aerial vehicle formation flight. In: Proc. AIAA Conf. Guidance, Navigation, and Control 96-3833, San Diego, CA (1996)

    Google Scholar 

  4. Smith, T.R., Hanssmann, H., Leonard, N.E.: Orientation control of multiple underwater vehicles with symmetry-breaking potentials. In: Proc. IEEE Conf. Decision and Control, Orlando, FL, pp. 4598–4603 (2001)

    Google Scholar 

  5. Cortés, J., Bullo, F.: Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim. 44, 1543–1574 (2005)

    Article  MathSciNet  Google Scholar 

  6. Swaroop, D., Hedrick, J.K.: Constant spacing strategies for platooning in automated highway systems. ASME J. Dyn. Syst. Meas. Control 121, 462–470 (1999)

    Article  Google Scholar 

  7. Vidal, R., Shakernia, O., Sastry, S.: Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. Proc. - IEEE Int. Conf. Robot. Autom. 1, 584–589 (2003)

    Google Scholar 

  8. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  9. Paganini, F., Doyle, J.C., Low, S.H.: Scalable laws for stable network congestion control. In: Proc. IEEE Conf. Decision and Control, Orlando, FL, pp. 185–190 (2001)

    Google Scholar 

  10. Han, J., Li, M., Guo, L.: Soft control on collective behavior of group of autonomous agents by a shill agent. J. Syst. Sci. Complex. 19(1), 54–62 (2006)

    Article  MathSciNet  Google Scholar 

  11. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  12. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  13. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control 49, 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  14. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  15. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15, 818–828 (1999)

    Article  Google Scholar 

  16. Yang, Z., Zhang, Q., Chen, Z.: Flocking of multi-agents with nonlinear inner-coupling functions. Nonlinear Dyn. 60(3), 225–264 (2010)

    Article  MathSciNet  Google Scholar 

  17. Wang, L., Chen, Z., Liu, Z., Yuan, Z.: Finite time agreement protocol design of multi-agent systems with communication delays. Asian J. Control 11(3), 281–286 (2009)

    Article  MathSciNet  Google Scholar 

  18. Cortés, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42, 1993–2000 (2006)

    Article  MATH  Google Scholar 

  19. Saber, R.O., Murray, R.M.: Flocking with obstacle avoidance: cooperations with limited communication in mobile networks. In: IEEE Conf. on Decision and Control, Maui, Hawaii, USA, pp. 2022–2028 (2003)

    Google Scholar 

  20. Tanner, H.: Flocking with obstacle avoidance in switching networks of interconnected vehicles. In: IEEE International Conference Robotics and Automation, New Orleans, LA, pp. 3006–3011 (2004)

    Google Scholar 

  21. Ogren, P., Leonard, N.E.: Obstacle avoidance in formation. In: IEEE International Conf. Robotics and Automation, Taipei, Taiwan, pp. 2492–2497 (2003)

    Google Scholar 

  22. Godsil, C., Royal, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  23. Bhat, S.P., Bernstein, D.S.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibra. SIAM J. Control Optim. 42, 1745–1775 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyi Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Sun, S. & Xia, C. Finite-time stability of multi-agent system in disturbed environment. Nonlinear Dyn 67, 2009–2016 (2012). https://doi.org/10.1007/s11071-011-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0125-0

Keywords

Navigation