Skip to main content
Log in

An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the attitude control problem of spacecrafts with flexible appendages. It is well known that the unwanted vibration modes, model uncertainty and space environmental disturbances may cause degradation of the performance of attitude control systems for a flexible spacecraft. In this paper, the vibration from flexible appendages is modeled as a derivative-bounded disturbance to the attitude control system of the rigid hub. A disturbance-observer-based control (DOBC) is formulated for feedforward compensation of the elastic vibration. The model uncertainty and space environmental disturbances as well as other noises are merged into an “equivalent” disturbance. We design a composite controller with a hierarchical architecture by combining DOBC and PD control, where DOBC is used to reject the vibration effect from the flexible appendages. Numerical simulations are performed to demonstrate that by using the composite hierarchical control law, disturbances can be effectively attenuated and the robust dynamic performances be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller, A.J., Gray, G.L., Mazzoleni, A.P.: Nonlinear spacecraft dynamics with flexible appendage, damping, and moving internal submasses. J. Guid. Control Dyn. 42(3), 605–615 (2001)

    Article  Google Scholar 

  2. Nagata, T., Modi, V.J.M., Matsuo, H.: Dynamics and control of flexible multibody systems part I: general formulation with an order N forward dynamics. Acta Astronaut. 49(11), 581–594 (2001)

    Article  Google Scholar 

  3. Ben-Asher, J., Burns, J.A., CliO, E.M.: Time optimal slewing of flexible spacecraft. J. Guid. Control Dyn. 15, 360–367 (1992)

    Article  MATH  Google Scholar 

  4. Bolonkin, A.A., Khot, N.S.: Optimal bounded control design for vibration suppression. Acta Astronaut. 38(10), 803–813 (1996)

    Article  Google Scholar 

  5. Song, G., Kotejoshyer, B.: Vibration reduction of flexible structures during slew operations. Int. J. Acoust. Vib. 7(2), 105–109 (2002)

    Google Scholar 

  6. Chen, Y.P., Lo, S.C.: Sliding mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1328–1333 (1993)

    Article  Google Scholar 

  7. Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Control Dyn. 19(6), 1381–1383 (1996)

    Article  MATH  Google Scholar 

  8. Gennaro, S.D.: Active vibration suppression in flexible spacecraft attitude tracking. J. Guid. Control Dyn. 21(3), 400–408 (1998)

    Article  Google Scholar 

  9. Gennaro, S.D.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electron. Syst. 39(3), 747–759 (2003)

    Article  Google Scholar 

  10. Hu, Q.L., Ma, G.F.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005)

    Article  MATH  Google Scholar 

  11. Hu, Q.L.: Variable structure maneuvering control with time-varying sliding surface and active vibration damping of flexible spacecraft with input saturation. Acta Astronaut. 64, 1085–1108 (2009)

    Article  Google Scholar 

  12. Ballois, S.L., Duc, G.: H control of an earth observation satellite. J. Guid. Control Dyn. 19(3), 628–635 (1996)

    Article  MATH  Google Scholar 

  13. Byun, K.W., Wie, B., Geller, D.: Robust H control design for the space station with structured parameter uncertainty. J. Guid. Control Dyn. 14(6), 1115–1122 (1996)

    Article  MathSciNet  Google Scholar 

  14. Charbonnel, C.: H and LMI attitude control design: towards performances and robustness enhancement. Acta Astronaut. 54, 307–314 (2004)

    Article  Google Scholar 

  15. Guo, L., Chen, W.H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15, 109–125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, L., Feng, C.B., Chen, W.H.: A survey of disturbance-observer-based control for dynamic nonlinear system. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 13, 79–84 (2006)

    Google Scholar 

  17. Ishikawa, J., Tomizuka, M.: Pivot friction compensation using an accelerometer and a disturbance observer for hard disk. IEEE/ASME Trans. Mechatron. 3, 194–201 (1998)

    Article  Google Scholar 

  18. Chen, W.H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003)

    Article  Google Scholar 

  19. Wei, X., Guo, L.: Composite disturbance-observer-based control and H control for complex continuous models. Int. J. Robust Nonlinear Control 20(1), 106–118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Isidori, A., Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35, 131–140 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marino, R., Tomei, P.: Adaptive tracking and disturbance rejection for uncertain nonlinear systems. IEEE Trans. Autom. Control 50, 90–95 (2005)

    Article  MathSciNet  Google Scholar 

  22. Wu, H.: Continuous adaptive robust controllers guaranteeing uniform ultimate boundedness for uncertain nonlinear systems. Int. J. Control 72, 115–122 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Guo, L. & Zhang, Y. An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn 67, 2081–2088 (2012). https://doi.org/10.1007/s11071-011-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0130-3

Keywords

Navigation