Skip to main content
Log in

Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A fractional-order weighted complex network consists of a number of nodes, which are the fractional-order chaotic systems, and weighted connections between the nodes. In this paper, we investigate generalized chaotic synchronization of the general fractional-order weighted complex dynamical networks with nonidentical nodes. The well-studied integer-order complex networks are the special cases of the fractional-order ones. Based on the stability theory of linear fraction-order systems, the nonlinear controllers are designed to make the fractional-order complex dynamical networks with distinct nodes asymptotically synchronize onto any smooth goal dynamics. Numerical simulations are provided to verify the theoretical results. It is worth noting that the synchronization effect sensitively depends on both the fractional order θ and the feedback gain k i . Moreover, generalized synchronization of the fractional-order weighted networks can still be achieved effectively with the existence of noise perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  2. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  Google Scholar 

  3. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999)

    Article  Google Scholar 

  4. Li, C., Liao, X.: Lag synchronization of Rössler system and Chua circuit via a scalar signal. Phys. Lett. A 329, 301–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  8. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  Google Scholar 

  9. Pastor-Satorras, R., Smith, E., Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  Google Scholar 

  10. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49, 54–62 (2002)

    Article  Google Scholar 

  11. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  12. Arenas, A., Guilera, A.D., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  13. Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009)

    Article  MATH  Google Scholar 

  14. Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun, W., Wang, R., Wang, W., Cao, J.: Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn. Neurodyn. 4, 225–231 (2010)

    Article  Google Scholar 

  16. Chen, J., Jiao, L., Wu, J., Wang, X.: Projective synchronization with different scale factors in a driven–response complex network and its application in image encryption. Nonlinear Anal. Real World Appl. 11, 3045–3058 (2010)

    Article  MATH  Google Scholar 

  17. Hu, C., Yu, J., Jiang, H., Teng, Z.: Synchronization of complex community networks with nonidentical nodes and adaptive coupling strength. Phys. Lett. A 375, 873–879 (2011)

    Article  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  19. Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, Hackensack (2001)

    Google Scholar 

  20. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

    Article  Google Scholar 

  22. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  23. Li, C.G., Chen, G.R.: Chaos and hyperchaos in fractional order Rössler equations. Physica A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  24. Wu, X.J., Shen, S.L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math. 86, 1274–1282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, X., Li, J., Chen, G.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345, 392–401 (2008)

    Article  MATH  Google Scholar 

  26. Tang, Y., Wang, Z., Fang, J.: Ping control of fractional-order weighted complex networks. Chaos 19, 013112 (2009)

    Article  MathSciNet  Google Scholar 

  27. Tang, Y., Fang, J.: Synchronization of N-coupled fractional-order chaotic systems with ring connection. Commun. Nonlinear Sci. Numer. Simul. 15, 401–412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, J., Zhang, Y.: Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A 374, 1464–1468 (2010)

    Article  MATH  Google Scholar 

  29. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  31. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  34. Wang, X., Wang, M.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos 17, 033106 (2007)

    Article  Google Scholar 

  35. Lu, J.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  36. Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Lai, D. & Lu, H. Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dyn 69, 667–683 (2012). https://doi.org/10.1007/s11071-011-0295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0295-9

Keywords

Navigation